Learn R Programming

plsRglm (version 1.5.1)

simul_data_YX: Data generating function for multivariate plsR models

Description

This function generates a single multivariate response value \(\boldsymbol{Y}\) and a vector of explinatory variables \((X_1,\ldots,X_{totdim})\) drawn from a model with a given number of latent components.

Usage

simul_data_YX(totdim, ncomp)

Value

vector

\((Y_1,\ldots,Y_r,X_1,\ldots,X_{totdim})\)

Arguments

totdim

Number of column of the X vector (from ncomp to hardware limits)

ncomp

Number of latent components in the model (from 2 to 6)

Details

This function should be combined with the replicate function to give rise to a larger dataset. The algorithm used is a port of the one described in the article of Li which is a multivariate generalization of the algorithm of Naes and Martens.

References

T. Naes, H. Martens, Comparison of prediction methods for multicollinear data, Commun. Stat., Simul. 14 (1985) 545-576.
Morris, Elaine B. Martin, Model selection for partial least squares regression, Chemometrics and Intelligent Laboratory Systems 64 (2002) 79-89, tools:::Rd_expr_doi("10.1016/S0169-7439(02)00051-5").

See Also

simul_data_complete for highlighting the simulations parameters

Examples

Run this code

simul_data_YX(20,6)                          

# \donttest{
if(require(plsdepot)){
dimX <- 6
Astar <- 2
(dataAstar2 <- t(replicate(50,simul_data_YX(dimX,Astar))))
library(plsdepot)
resAstar2 <- plsreg2(dataAstar2[,4:9],dataAstar2[,1:3],comps=5)
resAstar2$Q2
resAstar2$Q2[,4]>0.0975

dimX <- 6
Astar <- 3
(dataAstar3 <- t(replicate(50,simul_data_YX(dimX,Astar))))
library(plsdepot)
resAstar3 <- plsreg2(dataAstar3[,4:9],dataAstar3[,1:3],comps=5)
resAstar3$Q2
resAstar3$Q2[,4]>0.0975

dimX <- 6
Astar <- 4
(dataAstar4 <- t(replicate(50,simul_data_YX(dimX,Astar))))
library(plsdepot)
resAstar4 <- plsreg2(dataAstar4[,5:10],dataAstar4[,1:4],comps=5)
resAstar4$Q2
resAstar4$Q2[,5]>0.0975

rm(list=c("dimX","Astar"))
}
# }

Run the code above in your browser using DataLab