# \donttest{
data(aze_compl)
Xaze_compl<-aze_compl[,2:34]
yaze_compl<-aze_compl$y
dataset <- cbind(y=yaze_compl,Xaze_compl)
# Lazraq-Cleroux PLS bootstrap Classic
aze_compl.tilt.boot <- tilt.bootplsglm(plsRglm(yaze_compl,Xaze_compl,3,
modele="pls-glm-logistic", family=NULL), statistic=coefs.plsRglm, R=c(499, 100, 100),
alpha=c(0.025, 0.975), sim="ordinary", stype="i", index=1)
boxplots.bootpls(aze_compl.tilt.boot,1:2)
aze_compl.tilt.boot2 <- tilt.bootplsglm(plsRglm(yaze_compl,Xaze_compl,3,
modele="pls-glm-logistic"), statistic=coefs.plsRglm, R=c(499, 100, 100),
alpha=c(0.025, 0.975), sim="ordinary", stype="i", index=1)
boxplots.bootpls(aze_compl.tilt.boot2,1:2)
aze_compl.tilt.boot3 <- tilt.bootplsglm(plsRglm(yaze_compl,Xaze_compl,3,
modele="pls-glm-family", family=binomial), statistic=coefs.plsRglm, R=c(499, 100, 100),
alpha=c(0.025, 0.975), sim="ordinary", stype="i", index=1)
boxplots.bootpls(aze_compl.tilt.boot3,1:2)
# PLS bootstrap balanced
aze_compl.tilt.boot4 <- tilt.bootplsglm(plsRglm(yaze_compl,Xaze_compl,3,
modele="pls-glm-logistic"), statistic=coefs.plsRglm, R=c(499, 100, 100),
alpha=c(0.025, 0.975), sim="balanced", stype="i", index=1)
boxplots.bootpls(aze_compl.tilt.boot4,1:2)
# }
Run the code above in your browser using DataLab