spa_pls: Sub-window permutation analysis coupled with PLS (SwPA-PLS)
Description
SwPA-PLS provides the influence of each variable without considering the
influence of the rest of the variables through sub-sampling of samples and variables.
Usage
spa_pls(y, X, ncomp = 10, N = 3, ratio = 0.8, Qv = 10, SPA.threshold = 0.05)
Value
Returns a vector of variable numbers corresponding to the model
having lowest prediction error.
Arguments
y
vector of response values (numeric or factor).
X
numeric predictor matrix.
ncomp
integer number of components (default = 10).
N
number of Monte Carlo simulations (default = 3).
ratio
the proportion of the samples to use for calibration (default = 0.8).
Qv
integer number of variables to be sampled in each iteration (default = 10).
SPA.threshold
thresholding to remove non-important variables (default = 0.05).
Author
Tahir Mehmood, Kristian Hovde Liland, Solve Sæbø.
References
H. Li, M. Zeng, B. Tan, Y. Liang, Q. Xu, D. Cao, Recipe for revealing
informative metabolites based on model population analysis, Metabolomics 6 (2010) 353-361.
http://code.google.com/p/spa2010/downloads/list.