Learn R Programming

plspm (version 0.2-2)

plsreg2: PLS-R2: Partial Least Squares Regression 2

Description

Calculates partial least squares regression for the multivariate case (i.e. more than one response variable)

Usage

plsreg2(X, Y, nc = 2)

Arguments

X
A numeric matrix or data frame containing the predictor variables.
Y
A numeric matrix or data frame containing the predictand variables.
nc
The number of extracted PLS components (2 by default)

Value

  • An object of class "plsreg2", basically a list with the following elements:
  • x.scorescomponents of the predictor variables.
  • x.loadsloadings of the predictor variables.
  • y.scorescomponents of the predictand variables.
  • y.loadsloadings of the predictand variables.
  • raw.wgsweights to calculate the PLS scores with the deflated matrices of predictor variables.
  • mod.wgsmodified weights to calculate the PLS scores with the matrix of predictor variables.
  • cor.txmodified weights to calculate the PLS scores with the matrix of predictor variables.
  • cor.tymodified weights to calculate the PLS scores with the matrix of predictor variables.
  • std.coefVector of standardized regression coefficients.
  • coeffsVector of regression coefficients (used with the original data scale).
  • y.predVector of predicted values.
  • residVector of residuals.
  • expvartable with R-squared coefficients.
  • Q2table of Q2 indexes (i.e. leave-one-out cross validation).
  • Q2cumtable of cummulated Q2 indexes.
  • VIPVariable Importance for Projection.

Details

The minimum number of PLS components nc is 2. The data is scaled to standardized values (mean=0, variance=1). No missing data are allowed. Argument Y must contain more than one variable. If Y is a vector, you may use the function plsreg1.

References

Geladi, P., and Kowlaski, B. (1986) Partial Least Squares Regression: A Tutorial. Analytica Chimica Acta, 185, pp. 1-17. Hoskuldsson, A. (1988) PLS Regression Methods. Journal of Chemometrics, 2, pp. 211-228. Tenenhaus, M. (1998) La Regression PLS. Theorie et Pratique. Editions TECHNIP, Paris. Valencia, J.L., Diaz-Llanos, F.J. (2004) Metodos de Prediccion en Situaciones Limite. Editorial La Muralla, S.A. Madrid.

See Also

print.plsreg2, plot.plsreg2, plsreg1.

Examples

Run this code
## example of PLSR2 with the vehicles dataset
  data(vehicles)
  pls2 <- plsreg2(vehicles[,1:12], vehicles[,13:16])
  pls2
  plot(pls2)

Run the code above in your browser using DataLab