if (FALSE) {
## Example of REBUS PLS with simulated data
# load simdata
data("simdata", package='plspm')
# Calculate global plspm
sim_inner = matrix(c(0,0,0,0,0,0,1,1,0), 3, 3, byrow=TRUE)
dimnames(sim_inner) = list(c("Price", "Quality", "Satisfaction"),
c("Price", "Quality", "Satisfaction"))
sim_outer = list(c(1,2,3,4,5), c(6,7,8,9,10), c(11,12,13))
sim_mod = c("A", "A", "A") # reflective indicators
sim_global = plspm(simdata, sim_inner,
sim_outer, modes=sim_mod)
sim_global
## Then compute cluster analysis on residuals of global model
sim_clus = res.clus(sim_global)
## To complete REBUS, run iterative algorithm
rebus_sim = it.reb(sim_global, sim_clus, nk=2,
stop.crit=0.005, iter.max=100)
## You can also compute complete outputs
## for local models by running:
local_rebus = local.models(sim_global, rebus_sim)
# Display plspm summary for first local model
summary(local_rebus$loc.model.1)
}
Run the code above in your browser using DataLab