if (FALSE) {
## typical example of PLS-PM in customer satisfaction analysis
## model with six LVs and reflective indicators
## example of rebus analysis with simulated data
# load data
data(simdata)
# Calculate plspm
sim_path = matrix(c(0,0,0,0,0,0,1,1,0), 3, 3, byrow=TRUE)
dimnames(sim_path) = list(c("Price", "Quality", "Satisfaction"),
c("Price", "Quality", "Satisfaction"))
sim_blocks = list(c(1,2,3,4,5), c(6,7,8,9,10), c(11,12,13))
sim_mod = c("A", "A", "A") # reflective indicators
sim_global = plspm(simdata, sim_path,
sim_blocks, modes=sim_mod)
sim_global
# Cluster analysis on residuals of global model
sim_clus = res.clus(sim_global)
# Iterative steps of REBUS algorithm on 2 classes
rebus_sim = it.reb(sim_global, sim_clus, nk=2,
stop.crit=0.005, iter.max=100)
# apply rebus.test
sim_permu = rebus.test(sim_global, rebus_sim)
# inspect sim.rebus
sim_permu
sim_permu$test_1_2
# or equivalently
sim_permu[[1]]
}
Run the code above in your browser using DataLab