Learn R Programming

poLCA (version 1.6.0.1)

poLCA.predcell: Predicted cell percentages in a latent class model

Description

Calculates the predicted cell percentages from a latent class model, for specified values of the manifest variables.

Usage

poLCA.predcell(lc,y)

Arguments

lc

A model object estimated using the poLCA function.

y

A vector or matrix containing series of responses on the manifest variables in lc.

Value

A vector containing cell percentages corresponding to the specified sets of responses y, based on the estimated latent class model lc.

Details

The parameters estimated by a latent class model can be used to produce a density estimate of the underlying probability mass function across the cells in the multi-way table of manifest variables. This function calculates cell percentages for that density estimate, corresponding to selected sets of responses on the manifest variables, y.

See Also

poLCA

Examples

Run this code
# NOT RUN {
data(carcinoma)
f <- cbind(A,B,C,D,E,F,G)~1
lca3 <- poLCA(f,carcinoma,nclass=3) # log-likelihood: -293.705

# Only 20 out of 32 possible response patterns are observed
lca3$predcell

# Produce cell probabilities for one sequence of responses
poLCA.predcell(lc=lca3,y=c(1,1,1,1,1,1,1))

# Estimated probabilities for a cell with zero observations
poLCA.predcell(lc=lca3,y=c(1,1,1,1,1,1,2))

# Cell probabilities for both cells at once; y entered as a matrix
poLCA.predcell(lc=lca3,y=rbind(c(1,1,1,1,1,1,1),c(1,1,1,1,1,1,2)))
# }

Run the code above in your browser using DataLab