Learn R Programming

poisDoubleSamp (version 1.1.1)

waldCI: Compute the Wald confidence interval

Description

Compute the Wald confidence interval of a two-sample Poisson rate with misclassified data given fallible and infallible datasets.

Usage

waldCI(data, N1, N2, N01, N02, conf.level = 0.95)

Arguments

data

the vector of counts of the fallible data (z11, z12, z21, z22) followed by the infallible data (m011, m012, m021, m022, y01, y02)

N1

the opportunity size of group 1 for the fallible data

N2

the opportunity size of group 2 for the fallible data

N01

the opportunity size of group 1 for the infallible data

N02

the opportunity size of group 2 for the infallible data

conf.level

confidence level of the interval

Value

a named vector containing the lower and upper bounds of the confidence interval

Examples

Run this code
# NOT RUN {
# small example
z11 <- 34; z12 <- 35; N1 <- 10; 
z21 <- 22; z22 <- 31; N2 <- 10;
m011 <- 9; m012 <- 1; y01 <- 3; N01 <- 3;
m021 <- 8; m022 <- 8; y02 <- 2; N02 <- 3;
data <- c(z11, z12, z21, z22, m011, m012, m021, m022, y01, y02)

waldCI(data, N1, N2, N01, N02) 
margMLECI(data, N1, N2, N01, N02)
profMLECI(data, N1, N2, N01, N02)
approxMargMLECI(data, N1, N2, N01, N02)

# }
# NOT RUN {
# big example :
z11 <- 477; z12 <- 1025; N1 <- 16186;
z21 <- 255; z22 <- 1450; N2 <- 18811;
m011 <- 38;  m012 <- 90; y01 <- 15; N01 <- 1500; 
m021 <- 41; m022 <- 200; y02 <-  9; N02 <- 2500;
data <- c(z11, z12, z21, z22, m011, m012, m021, m022, y01, y02)

waldCI(data, N1, N2, N01, N02) 
margMLECI(data, N1, N2, N01, N02)
profMLECI(data, N1, N2, N01, N02)
approxMargMLECI(data, N1, N2, N01, N02)


# }
# NOT RUN {
# }

Run the code above in your browser using DataLab