This function summarizes both the stepwise selection process of the
model fitting by logspline
, as well as the final model
that was selected using AIC/BIC. A
logspline
object was fit using the 1997 knot addition and deletion algorithm.
The 1992 algorithm is available using the oldlogspline
function.
# S3 method for logspline
summary(object, ...)
# S3 method for logspline
print(x, ...)
logspline
object, typically the result of logspline
other arguments are ignored.
Charles Kooperberg clk@fredhutch.org.
These function produce identical printed output. The main body is a table with five columns: the first column is a possible number of knots for the fitted model;
the second column is the log-likelihood for the fit;
the third column is -2 * loglikelihood + penalty * (number of knots - 1)
,
which is the AIC criterion; logspline
selected the model with
the smallest value of AIC;
the fourth and fifth columns give the
endpoints of the interval of values of penalty that would yield the
model with the indicated number of knots. (NA
s imply that the model is
not optimal for any choice of penalty
.) At the bottom of the table the
number of knots corresponding to the selected model is reported, as is
the value of penalty that was used.
Charles Kooperberg and Charles J. Stone. Logspline density estimation for censored data (1992). Journal of Computational and Graphical Statistics, 1, 301--328.
Charles J. Stone, Mark Hansen, Charles Kooperberg, and Young K. Truong. The use of polynomial splines and their tensor products in extended linear modeling (with discussion) (1997). Annals of Statistics, 25, 1371--1470.
logspline
,
plot.logspline
,
dlogspline
,
plogspline
,
qlogspline
,
rlogspline
,
oldlogspline
.
y <- rnorm(100)
fit <- logspline(y)
summary(fit)
Run the code above in your browser using DataLab