Learn R Programming

pooledpeaks (version 1.1.1)

clean_scores: Clean Scores Data

Description

This function cleans the score_markers_rev3 data by applying specified patterns and replacements to the ID and filename columns.

Usage

clean_scores(
  scores_data,
  pattern1 = NULL,
  replacement1 = NULL,
  pattern2 = NULL,
  replacement2 = NULL,
  pattern3 = NULL,
  replacement3 = NULL
)

Value

A cleaned long format data frame

Arguments

scores_data

The list containing the output scores data from the score_markers_rev3.

pattern1

The first pattern to replace in the ID.This is intended to clean up the ID names for when the machine adds substrings to the names. For example 104.1a_FA060920_2020-06-09_C05.fsa.1 becomes 104.1a using pattern1="_FA.*" and replacement1= ""

replacement1

Replacement for the first pattern.

pattern2

The second pattern to replace in the ID. See pattern1 for more details.

replacement2

Replacement for the second pattern.

pattern3

The pattern to replace in the file name.This is intended to clean up the file names for when the machine adds sub strings to the names. For example 104.1a_FA060920_2020-06-09_C05.fsa.1 becomes 104.1a_FA060920_2020-06-09_C05.fsa using pattern3= "\.1*$" and replacement3= ""

replacement3

Replacement for the file name pattern.

Examples

Run this code
scores_data <- list(
data.frame(Score = c(90, 85, 70), stringsAsFactors = FALSE),
data.frame(Score = c(80, 75, 60), stringsAsFactors = FALSE)
)
rownames(scores_data[[1]]) <- c("104.1a_FA060920_2020-06-09_C05.fsa_Sa.1",
                                "105.2b_FA060920_2020-06-09_C05.fsa_Sa.1",
                                "106.3c_FA060920_2020-06-09_C05.fsa_Fa.1")
rownames(scores_data[[2]]) <- c("107.4d_FA060920_2020-06-09_C05.fsa_Sa.1",
                                "108.5e_FA060920_2020-06-09_C05.fsa_Sa.1",
                                "109.6f_SA060920_2020-06-09_C05.fsa_Fa.1")
clean_scores(scores_data,pattern1= "_SA.*", replacement1="",
pattern2= "_FA.*",replacement2="")

Run the code above in your browser using DataLab