# NOT RUN {
# Please note that the data presented is assuming that the nancycat dataset
# contains all dinucleotide repeats, it most likely is not an accurate
# representation of the data.
# Load the nancycats dataset and construct the repeat vector.
data(nancycats)
ssr <- rep(2, 9)
# Analyze the 1st population in nancycats
bruvo.boot(popsub(nancycats, 1), replen = ssr)
# }
# NOT RUN {
# Always load the library before you specify the function.
library("ape")
# Estimate the tree based off of the BIONJ algorithm.
bruvo.boot(popsub(nancycats, 9), replen = ssr, tree = bionj)
# Utilizing balanced FastME
bruvo.boot(popsub(nancycats, 9), replen = ssr, tree = fastme.bal)
# To change parameters for the tree, wrap it in a function.
# For example, let's build the tree without utilizing subtree-prune-regraft
myFastME <- function(x) fastme.bal(x, nni = TRUE, spr = FALSE, tbr = TRUE)
bruvo.boot(popsub(nancycats, 9), replen = ssr, tree = myFastME)
# }
# NOT RUN {
# }
Run the code above in your browser using DataLab