Learn R Programming

powerlmm (version 0.4.0)

get_power_table: Create a power table for a combination of parameter values

Description

Create a power table for a combination of parameter values

Usage

get_power_table(object, n2, ..., df = "between", alpha = 0.05,
  R = 1L, cores = 1L)

Arguments

object

An object created by study_parameters

n2

A vector of n2 values

...

Optional named arguments. Up to two extra arguments can be compared. When used together with the plot method, the first argument will be grouped by color and the second by facets.

df

Either "between" or "satterth" for Satterthwaite's DF approximation. Also accepts a numeric value which will be used as DF. See get_power

alpha

The alpha level, defaults to 0.05.

R

An integer indicating how many realizations to base power on. Useful when dropout or cluster sizes are sampled (i.e. are random variables).

cores

An integer indicating how many CPU cores to use.

Value

A data.frame with class plcp_power_table.

Examples

Run this code
# NOT RUN {
paras <- study_parameters(n1 = 11,
                          n2 = 10,
                          n3 = 6,
                          T_end = 10,
                          icc_pre_subject = 0.5,
                          icc_pre_cluster = 0,
                          var_ratio = 0.03,
                          icc_slope = 0.05,
                          cohend = -0.8)

# increase only n2
x <- get_power_table(paras, n2 = 10:15)
plot(x)

# Compare two parameters
x <- get_power_table(paras, n2 = 10:15, n3 = 6:8)
plot(x)

# Compare impact of three parameters
x <- get_power_table(paras, n2 = seq(3, 25, by = 3),
                            n3 = c(3,6,9),
                            icc_slope = c(0, 0.05, 0.1))
plot(x)
# }

Run the code above in your browser using DataLab