Fs <- function(s) 1/(s^2 + 1) # sine function
Li <- invlap(Fs, 0, 2*pi, 100)
plot(Li[[1]], Li[[2]], type = "l", col = "blue"); grid()
Fs <- function(s) tanh(s)/s # step function
L1 <- invlap(Fs, 0.01, 20, 1000)
plot(L1[[1]], L1[[2]], type = "l", col = "blue")
L2 <- invlap(Fs, 0.01, 20, 2000, 6, 280, 59)
lines(L2[[1]], L2[[2]], col="darkred"); grid()
Fs <- function(s) 1/(sqrt(s)*s)
L1 <- invlap(Fs, 0.01, 5, 200, 6, 40, 20)
plot(L1[[1]], L1[[2]], type = "l", col = "blue"); grid()
Fs <- function(s) 1/(s^2 - 1) # hyperbolic sine function
Li <- invlap(Fs, 0, 2*pi, 100)
plot(Li[[1]], Li[[2]], type = "l", col = "blue"); grid()
Fs <- function(s) 1/s/(s + 1) # exponential approach
Li <- invlap(Fs, 0, 2*pi, 100)
plot(Li[[1]], Li[[2]], type = "l", col = "blue"); grid()
gamma <- 0.577215664901532 # Euler-Mascheroni constant
Fs <- function(s) -1/s * (log(s)+gamma) # natural logarithm
Li <- invlap(Fs, 0, 2*pi, 100)
plot(Li[[1]], Li[[2]], type = "l", col = "blue"); grid()
Fs <- function(s) (20.5+3.7343*s^1.15)/(21.5+3.7343*s^1.15+0.8*s^2.2+0.5*s^0.9)/s
L1 <- invlap(Fs, 0.01, 5, 200, 6, 40, 20)
plot(L1[[1]], L1[[2]], type = "l", col = "blue")
grid()
Run the code above in your browser using DataLab