Learn R Programming

pracma (version 1.2.5)

clenshaw_curtis: Clenshaw-Curtis Quadrature Formula

Description

Clenshaw-Curtis Quadrature Formula

Usage

clenshaw_curtis(f, a = -1, b = 1, n = 32, ...)

Arguments

f
function, the integrand, without singularities.
a, b
lower and upper limit of the integral; must be finite.
n
Number of Chebyshev nodes to account for.
...
Additional parameters to be passed to the function

Value

  • Numerical scalar, the value of the integral.

Details

Clenshaw-Curtis quadrature is based on sampling the integrand on Chebyshev points, an operation that can be implemented using the Fast Fourier Transform.

References

Trefethen, L. N. (2008). Is Gauss Quadrature Better Than Clenshaw-Curtis?. http://www.comlab.ox.ac.uk/nick.trefethen/CC.pdf.

See Also

gaussLegendre, gauss_kronrod

Examples

Run this code
##  Quadrature with Chebyshev nodes and weights
f <- function(x) sin(x+cos(10*exp(x))/3)
ezplot(f, -1, 1, fill = TRUE)
cc <- clenshaw_curtis(f, n = 64)  #=>  0.0325036517151 , true error > 1.3e-10

Run the code above in your browser using DataLab