## Example from Quarteroni & Saleri
F1 <- function(x) c(x[1]^2 + x[2]^2 - 1, sin(pi*x[1]/2) + x[2]^3)
broyden(F1, x0 = c(1, 1))
# zero: 0.4760958 -0.8793934; fnorm: 9.092626e-09; niter: 13
F <- function(x) {
x1 <- x[1]; x2 <- x[2]; x3 <- x[3]
as.matrix(c(x1^2 + x2^2 + x3^2 - 1,
x1^2 + x3^2 - 0.25,
x1^2 + x2^2 - 4*x3), ncol = 1)
}
x0 <- as.matrix(c(1, 1, 1))
broyden(F, x0)
# zero: 0.4407629 0.8660254 0.2360680; fnorm: 1.34325e-08; niter: 8
## Find the roots of the complex function sin(z)^2 + sqrt(z) - log(z)
F2 <- function(x) {
z <- x[1] + x[2]*1i
fz <- sin(z)^2 + sqrt(z) - log(z)
c(Re(fz), Im(fz))
}
broyden(F2, c(1, 1))
# zero 0.2555197 0.8948303 , i.e. z0 = 0.2555 + 0.8948i
# fnorm 7.284374e-10
# niter 13
Run the code above in your browser using DataLab