## Newton's example
f <- function(x, y) 1 - 3*x + y + x^2 + x*y
sol100 <- cranknic(f, 0, 1, 0, N = 100)
sol1000 <- cranknic(f, 0, 1, 0, N = 1000)
# Euler's forward approach
feuler <- function(f, t0, t1, y0, n) {
h <- (t1 - t0)/n; x <- seq(t0, t1, by = h)
y <- numeric(n+1); y[1] <- y0
for (i in 1:n) y[i+1] <- y[i] + h * f(x[i], y[i])
return(list(x = x, y = y))
}
solode <- ode23(f, 0, 1, 0)
soleul <- feuler(f, 0, 1, 0, 100)
plot(soleul$x, soleul$y, type = "l", col = "blue",
xlab = "", ylab = "", main = "Newton's example")
lines(solode$t, solode$y, col = "gray", lwd = 3)
lines(sol100$t, sol100$y, col = "red")
lines(sol1000$t, sol1000$y, col = "green")
grid()
## System of differential equations
# "Herr und Hund"
fhh <- function(x, y) {
y1 <- y[1]; y2 <- y[2]
s <- sqrt(y1^2 + y2^2)
dy1 <- 0.5 - 0.5*y1/s
dy2 <- -0.5*y2/s
return(c(dy1, dy2))
}
sol <- cranknic(fhh, 0, 60, c(0, 10))
plot(sol$y[, 1], sol$y[, 2], type = "l", col = "blue",
xlab = "", ylab = "", main = '"Herr und Hund"')
grid()
Run the code above in your browser using DataLab