Learn R Programming

pracma (version 1.7.9)

gmres: Generalized Minimal Residual Method

Description

gmres(A,b) attempts to solve the system of linear equations A*x=b for x.

Usage

gmres(A, b, x0 = rep(0, length(b)), 
          errtol = 1e-6, kmax = length(b)+1, reorth = 1)

Arguments

A
square matrix.
b
numerical vector or column vector.
x0
initial iterate.
errtol
relative residual reduction factor.
kmax
maximum number of iterations
reorth
reorthogonalization method, see Details.

Value

  • Returns a list with components x the solution, error the vector of residual norms, and niter the number of iterations.

Details

Iterative method for the numerical solution of a system of linear equations. The method approximates the solution by the vector in a Krylov subspace with minimal residual. The Arnoldi iteration is used to find this vector.

Reorthogonalization method: 1 -- Brown/Hindmarsh condition (default) 2 -- Never reorthogonalize (not recommended) 3 -- Always reorthogonalize (not cheap!)

References

C. T. Kelley (1995). Iterative Methods for Linear and Nonlinear Equations. SIAM, Society for Industrial and Applied Mathematics, Philadelphia, USA.

See Also

solve

Examples

Run this code
A <- matrix(c(0.46, 0.60, 0.74, 0.61, 0.85,
              0.56, 0.31, 0.80, 0.94, 0.76,
              0.41, 0.19, 0.15, 0.33, 0.06,
              0.03, 0.92, 0.15, 0.56, 0.08,
              0.09, 0.06, 0.69, 0.42, 0.96), 5, 5)
x <- c(0.1, 0.3, 0.5, 0.7, 0.9)
b <- A %*% x
gmres(A, b)
# $x
#      [,1]
# [1,]  0.1
# [2,]  0.3
# [3,]  0.5
# [4,]  0.7
# [5,]  0.9
# 
# $error
# [1] 2.37446e+00 1.49173e-01 1.22147e-01 1.39901e-02 1.37817e-02 2.81713e-31
# 
# $niter
# [1] 5

Run the code above in your browser using DataLab