Learn R Programming

pracma (version 1.9.3)

dblquad: Double and Triple Integration

Description

Numerically evaluate double integral over rectangle.

Usage

dblquad(f, xa, xb, ya, yb, dim = 2, ..., subdivs = 300, tol = .Machine$double.eps^0.5)
triplequad(f, xa, xb, ya, yb, za, zb, subdivs = 300, tol = .Machine$double.eps^0.5, ...)

Arguments

f
function of two variables, the integrand.
xa, xb
left and right endpoint for first variable.
ya, yb
left and right endpoint for second variable.
za, zb
left and right endpoint for third variable.
dim
which variable to integrate first.
subdivs
number of subdivisions to use.
tol
relative tolerance to use in integrate.
...
additional parameters to be passed to the integrand.

Value

Numerical scalar, the value of the integral.

Details

Function dblquad applies the internal single variable integration function integrate two times, once for each variable.

Function triplequad reduces the problem to dblquad by first integrating over the innermost variable.

See Also

integrate, quad2d, simpson2d

Examples

Run this code
f1 <- function(x, y) x^2 + y^2
dblquad(f1, -1, 1, -1, 1)       #   2.666666667 , i.e. 8/3 . err = 0

f2 <- function(x, y) y*sin(x)+x*cos(y)
dblquad(f2, pi, 2*pi, 0, pi)    #  -9.869604401 , i.e. -pi^2, err = 0

# f3 <- function(x, y) sqrt((1 - (x^2 + y^2)) * (x^2 + y^2 <= 1))
f3 <- function(x, y) sqrt(pmax(0, 1 - (x^2 + y^2)))
dblquad(f3, -1, 1, -1, 1)       #   2.094395124 , i.e. 2/3*pi , err = 2e-8

f4 <- function(x, y, z) y*sin(x)+z*cos(x)
triplequad(f4, 0,pi, 0,1, -1,1) # - 2.0 => -2.220446e-16

Run the code above in your browser using DataLab