Learn R Programming

pracma (version 1.9.3)

nearest_spd: Nearest Symmetric Positive-definite Matrix

Description

Find nearest (in Frobenius norm) symmetric positive-definite matrix to A.

Usage

nearest_spd(A)

Arguments

A
square numeric matrix.

Value

Returns a matrix of the same size.

Details

"The nearest symmetric positive semidefinite matrix in the Frobenius norm to an arbitrary real matrix A is shown to be (B + H)/2, where H is the symmetric polar factor of B=(A + A')/2." N. J. Highham

References

Nicholas J. Higham (1988). Computing a nearest symmetric positive semidefinite matrix. Linear Algebra and its Applications. Vol. 103, pp.103-118.

See Also

rortho, procrustes

Examples

Run this code
A <- matrix(1:9, 3, 3)
B <- nearest_spd(A); B
#          [,1]     [,2]     [,3]
# [1,] 2.034900 3.202344 4.369788
# [2,] 3.202344 5.039562 6.876781
# [3,] 4.369788 6.876781 9.383774
norm(B - A, type = 'F')
# [1] 3.758517

Run the code above in your browser using DataLab