Learn R Programming

pracma (version 1.9.3)

zeta: Riemann Zeta Function

Description

Riemann's zeta function valid in the entire complex plane.

Usage

zeta(z)

Arguments

z
Real or complex number or a numeric or complex vector.

Value

Returns a complex vector of function values.

Details

Computes the zeta function for complex arguments using a series expansion for Dirichlet's eta function.

Accuracy is about 13 significant digits for abs(z)<100< code="">, drops off with higher absolute values.

References

Zhang, Sh., and J. Jin (1996). Computation of Special Functions. Wiley-Interscience, New York.

See Also

gammaz, eta

Examples

Run this code
##  First zero on the critical line s = 0.5 + i t
## Not run: 
# x <- seq(0, 20, len=1001)
# z <- 0.5 + x*1i
# fr <- Re(zeta(z))
# fi <- Im(zeta(z))
# fa <- abs(zeta(z))
# plot(x, fa, type="n", xlim = c(0, 20), ylim = c(-1.5, 2.5),
#      xlab = "Imaginary part (on critical line)", ylab = "Function value",
#      main = "Riemann's Zeta Function along the critical line")
# lines(x, fr, col="blue")
# lines(x, fi, col="darkgreen")
# lines(x, fa, col = "red", lwd = 2)
# points(14.1347, 0, col = "darkred")
# legend(0, 2.4, c("real part", "imaginary part", "absolute value"),
#        lty = 1, lwd = c(1, 1, 2), col = c("blue", "darkgreen", "red"))
# grid()## End(Not run)

Run the code above in your browser using DataLab