
fminsearch(f, x0, ..., minimize = TRUE, dfree = TRUE, maxiter = 1000, tol = .Machine$double.eps^(2/3))
fminsearch
finds the minimum of a nonlinear scalar multivariable
function, starting at an initial estimate and returning a value x that is
a local minimizer of the function. With minimize=FALSE
it seaches for a maximum. dfree=TRUE
applies Nelder.Mead, else Fletcher-Powell, calculating the derivatives
numerically.
This is generally referred to as unconstrained nonlinear optimization.
fminsearch
may only give local solutions.
optim
# Rosenbrock function
rosena <- function(x, a) 100*(x[2]-x[1]^2)^2 + (a-x[1])^2 # min: (a, a^2)
fminsearch(rosena, c(-1.2, 1), a = sqrt(2))
# x = (1.414214 2.000010) , fval = 1.239435e-11
fminsearch(rosena, c(-1.2, 1), dfree=FALSE, a = sqrt(2))
# x = (1.414214 2.000000) , fval = 3.844519e-26
Run the code above in your browser using DataLab