A <- matrix(c(
0.8147, 0.1576, 0.6557,
0.9058, 0.9706, 0.0357,
0.1270, 0.9572, 0.8491,
0.9134, 0.4854, 0.9340,
0.6324, 0.8003, 0.6787,
0.0975, 0.1419, 0.7577,
0.2785, 0.4218, 0.7431,
0.5469, 0.9157, 0.3922,
0.9575, 0.7922, 0.6555,
0.9649, 0.9595, 0.1712), 10, 3, byrow = TRUE)
b <- matrix(c(
0.7060, 0.4387,
0.0318, 0.3816,
0.2769, 0.7655,
0.0462, 0.7952,
0.0971, 0.1869,
0.8235, 0.4898,
0.6948, 0.4456,
0.3171, 0.6463,
0.9502, 0.7094,
0.0344, 0.7547), 10, 2, byrow = TRUE)
C <- matrix(c(
1.0000, 1.0000, 1.0000,
1.0000, -1.0000, 0.5000), 2, 3, byrow = TRUE)
d <- as.matrix(c(1, 0.5))
# With a full rank constraint system
(L <- lsqlin(A, b, C, d))
# 0.10326838 0.3740381
# 0.03442279 0.1246794
# 0.86230882 0.5012825
C %*% L
# 1.0 1.0
# 0.5 0.5
## Not run:
# # With a rank deficient constraint system
# C <- str2num('[1 1 1;1 1 1]')
# d <- str2num('[1;1]')
# (L <- lsqlin(A, b[, 1], C, d))
# # 0.2583340
# # -0.1464215
# # 0.8880875
# C %*% L # 1 1 as column vector
#
# # Where both A and C are rank deficient
# A2 <- repmat(A[, 1:2], 1, 2)
# C <- ones(2, 4) # d as above
# (L <- lsqlin(A2, b[, 2], C, d))
# # 0.2244121
# # 0.2755879
# # 0.2244121
# # 0.2755879
# C %*% L # 1 1 as column vector## End(Not run)
Run the code above in your browser using DataLab