## Example from Quarteroni & Saleri
F1 <- function(x) c(x[1]^2 + x[2]^2 - 1, sin(pi*x[1]/2) + x[2]^3)
newtonsys(F1, x0 = c(1, 1)) # zero: 0.4760958 -0.8793934
## Find the roots of the complex function sin(z)^2 + sqrt(z) - log(z)
F2 <- function(x) {
z <- x[1] + x[2]*1i
fz <- sin(z)^2 + sqrt(z) - log(z)
c(Re(fz), Im(fz))
}
newtonsys(F2, c(1, 1))
# $zero 0.2555197 0.8948303 , i.e. z0 = 0.2555 + 0.8948i
# $fnorm 2.220446e-16
# $niter 8
## Two more problematic examples
F3 <- function(x)
c(2*x[1] - x[2] - exp(-x[1]), -x[1] + 2*x[2] - exp(-x[2]))
newtonsys(F3, c(0, 0))
# $zero 0.5671433 0.5671433
# $fnorm 0
# $niter 4
## Not run:
# F4 <- function(x) # Dennis Schnabel
# c(x[1]^2 + x[2]^2 - 2, exp(x[1] - 1) + x[2]^3 - 2)
# newtonsys(F4, c(2.0, 0.5))
# # will result in an error ``missing value in ... err<tol && niter<maxiter''## End(Not run)
Run the code above in your browser using DataLab