data(nile) # loads "nile" data frame
## Not run:
# nile_dt <- nile[, 2:13] # erase the "years" column
#
# # plot all years in one figure
# plot(ts(nile_dt), plot.type="single")
#
# # merge all years in one time series
# nile_ts <- ts( c(t(nile[, 2:13])), frequency = 12, start = c(1871, 1) )
#
# # aggregated flow per year
# nile_flow <- apply(nile_dt, 1, sum)
#
# plot(ts(nile_flow, frequency = 1, start = 1871) / 1000,
# col = "darkblue", lwd = 2.0,
# main = "Nile flows 1871 - 1984", ylab = "Flow / 1000")
# grid()
#
# # Hurst exponent of yearly Nile flow
# hurstexp(nile_flow)
# # Simple R/S Hurst estimation: 0.7348662
# # Corrected R over S Hurst exponent: 1.041862
# # Empirical Hurst exponent: 0.6975531
# # Corrected empirical Hurst exponent: 0.7136607
# # Theoretical Hurst exponent: 0.5244148
# ## End(Not run)
Run the code above in your browser using DataLab