
odregress(x, y)
coeff
linear coefficients and intercept
term, ssq
sum of squares of orthogonal distances to the linear line
or hyperplane, err
the orthogonal distances, fitted
the
fitted values, resid
the residuals, and normal
the normal
vector to the hyperplane.
See ODRPACK or ODRPACK95 (TOMS Algorithm 676). URL: http://docs.scipy.org/doc/external/odr_ams.pdf URL: http://semi.vt.edu/presentations/SEMI-March05_Watson.pdf
lm
# Example in one dimension
x <- c(1.0, 0.6, 1.2, 1.4, 0.2)
y <- c(0.5, 0.3, 0.7, 1.0, 0.2)
odr <- odregress(x, y)
( cc <- odr$coeff )
# [1] 0.65145762 -0.03328271
lm(y ~ x)
# Coefficients:
# (Intercept) x
# -0.01379 0.62931
# Prediction
xnew <- seq(0, 1.5, by = 0.25)
( ynew <- cbind(xnew, 1) %*% cc )
## Not run:
# plot(x, y, xlim=c(0, 1.5), ylim=c(0, 1.2), main="Orthogonal Regression")
# abline(lm(y ~ x), col="blue")
# lines(c(0, 1.5), cc[1]*c(0, 1.5) + cc[2], col="red")
# points(xnew, ynew, col = "red")
# grid()## End(Not run)
# Example in two dimensions
x <- cbind(c(0.92, 0.89, 0.85, 0.05, 0.62, 0.55, 0.02, 0.73, 0.77, 0.57),
c(0.66, 0.47, 0.40, 0.23, 0.17, 0.09, 0.92, 0.06, 0.09, 0.60))
y <- x %*% c(0.5, 1.5) + 1
odr <- odregress(x, y); odr
# $coeff
# [1] 0.5 1.5 1.0
# $ssq
# [1] 1.473336e-31
y <- y + rep(c(0.1, -0.1), 5)
odr <- odregress(x, y); odr
# $coeff
# [1] 0.5921823 1.6750269 0.8803822
# $ssq
# [1] 0.02168174
lm(y ~ x)
# Coefficients:
# (Intercept) x1 x2
# 0.9153 0.5671 1.6209
Run the code above in your browser using DataLab