if (FALSE) {
## Load library
library(ggplot2)
##################################################
### Single model & single test dataset
###
## Load a dataset with 10 positives and 10 negatives
data(P10N10)
## Generate an sscurve object that contains ROC and Precision-Recall curves
sscurves <- evalmod(scores = P10N10$scores, labels = P10N10$labels)
## Calculate partial AUCs
sscurves.part <- part(sscurves, xlim = c(0.25, 0.75))
## Show AUCs
sscurves.part
## Plot partial curve
plot(sscurves.part)
## Plot partial curve with ggplot
autoplot(sscurves.part)
##################################################
### Multiple models & single test dataset
###
## Create sample datasets with 100 positives and 100 negatives
samps <- create_sim_samples(1, 100, 100, "all")
mdat <- mmdata(samps[["scores"]], samps[["labels"]],
modnames = samps[["modnames"]]
)
## Generate an mscurve object that contains ROC and Precision-Recall curves
mscurves <- evalmod(mdat)
## Calculate partial AUCs
mscurves.part <- part(mscurves, xlim = c(0, 0.75), ylim = c(0.25, 0.75))
## Show AUCs
mscurves.part
## Plot partial curves
plot(mscurves.part)
## Plot partial curves with ggplot
autoplot(mscurves.part)
##################################################
### Single model & multiple test datasets
###
## Create sample datasets with 100 positives and 100 negatives
samps <- create_sim_samples(4, 100, 100, "good_er")
mdat <- mmdata(samps[["scores"]], samps[["labels"]],
modnames = samps[["modnames"]],
dsids = samps[["dsids"]]
)
## Generate an smcurve object that contains ROC and Precision-Recall curves
smcurves <- evalmod(mdat)
## Calculate partial AUCs
smcurves.part <- part(smcurves, xlim = c(0.25, 0.75))
## Show AUCs
smcurves.part
## Plot partial curve
plot(smcurves.part)
## Plot partial curve with ggplot
autoplot(smcurves.part)
##################################################
### Multiple models & multiple test datasets
###
## Create sample datasets with 100 positives and 100 negatives
samps <- create_sim_samples(4, 100, 100, "all")
mdat <- mmdata(samps[["scores"]], samps[["labels"]],
modnames = samps[["modnames"]],
dsids = samps[["dsids"]]
)
## Generate an mscurve object that contains ROC and Precision-Recall curves
mmcurves <- evalmod(mdat, raw_curves = TRUE)
## Calculate partial AUCs
mmcurves.part <- part(mmcurves, xlim = c(0, 0.25))
## Show AUCs
mmcurves.part
## Plot partial curves
plot(mmcurves.part)
## Plot partial curves with ggplot
autoplot(mmcurves.part)
}
Run the code above in your browser using DataLab