if (FALSE) {
# set seed for reproducibility
set.seed(500)
# load data
sim_pu_raster <- get_sim_pu_raster()
sim_features <- get_sim_features()
sim_zones_pu_raster <- get_sim_zones_pu_raster()
sim_zones_features <- get_sim_zones_features()
# create minimal problem with shuffle portfolio
p1 <-
problem(sim_pu_raster, sim_features) %>%
add_min_set_objective() %>%
add_relative_targets(0.2) %>%
add_shuffle_portfolio(10, remove_duplicates = FALSE) %>%
add_default_solver(gap = 0.2, verbose = FALSE)
# solve problem and generate 10 solutions within 20% of optimality
s1 <- solve(p1)
# convert portfolio into a multi-layer raster
s1 <- terra::rast(s1)
# print number of solutions found
print(terra::nlyr(s1))
# plot solutions in portfolio
plot(s1, axes = FALSE)
# build multi-zone conservation problem with shuffle portfolio
p2 <-
problem(sim_zones_pu_raster, sim_zones_features) %>%
add_min_set_objective() %>%
add_relative_targets(matrix(runif(15, 0.1, 0.2), nrow = 5, ncol = 3)) %>%
add_binary_decisions() %>%
add_shuffle_portfolio(10, remove_duplicates = FALSE) %>%
add_default_solver(gap = 0.2, verbose = FALSE)
# solve the problem
s2 <- solve(p2)
# convert each solution in the portfolio into a single category layer
s2 <- terra::rast(lapply(s2, category_layer))
# print number of solutions found
print(terra::nlyr(s2))
# plot solutions in portfolio
plot(s2, axes = FALSE)
}
Run the code above in your browser using DataLab