if (FALSE) {
# load data
sim_pu_raster <- get_sim_pu_raster()
sim_features <- get_sim_features()
# build minimal conservation problem with raster data
p1 <-
problem(sim_pu_raster, sim_features) %>%
add_min_set_objective() %>%
add_relative_targets(0.1) %>%
add_binary_decisions() %>%
add_default_solver(gap = 0, verbose = FALSE)
# solve the problem
s1 <- solve(p1)
# plot solution
plot(s1, main = "solution", axes = FALSE)
# calculate importance scores using replacement cost scores
ir1 <- eval_replacement_importance(p1, s1)
# calculate importance scores using Ferrier et al 2000 method,
# and extract the total importance scores
ir2 <- eval_ferrier_importance(p1, s1)[["total"]]
# calculate importance scores using rarity weighted richness scores
ir3 <- eval_rare_richness_importance(p1, s1)
# create multi-band raster with different importance scores
ir <- c(ir1, ir2, ir3)
names(ir) <- c(
"replacement cost", "Ferrier score", "rarity weighted richness"
)
# plot importance scores
plot(ir, axes = FALSE)
}
Run the code above in your browser using DataLab