if (FALSE) {
# load data
sim_pu_raster <- get_sim_pu_raster()
sim_features <- get_sim_features()
sim_phylogeny <- get_sim_phylogeny()
# create base problem
p <-
problem(sim_pu_raster, sim_features) %>%
add_relative_targets(0.1) %>%
add_binary_decisions() %>%
add_default_solver(verbose = FALSE)
# create problem with added minimum set objective
p1 <- p %>% add_min_set_objective()
# create problem with added maximum coverage objective
# note that this objective does not use targets
p2 <- p %>% add_max_cover_objective(500)
# create problem with added maximum feature representation objective
p3 <- p %>% add_max_features_objective(1900)
# create problem with added minimum shortfall objective
p4 <- p %>% add_min_shortfall_objective(1900)
# create problem with added minimum largest shortfall objective
p5 <- p %>% add_min_largest_shortfall_objective(1900)
# create problem with added maximum phylogenetic diversity objective
p6 <- p %>% add_max_phylo_div_objective(1900, sim_phylogeny)
# create problem with added maximum phylogenetic diversity objective
p7 <- p %>% add_max_phylo_end_objective(1900, sim_phylogeny)
# create problem with added maximum utility objective
# note that this objective does not use targets
p8 <- p %>% add_max_utility_objective(1900)
# solve problems
s <- c(
solve(p1), solve(p2), solve(p3), solve(p4), solve(p5), solve(p6),
solve(p7), solve(p8)
)
names(s) <- c(
"min set", "max coverage", "max features", "min shortfall",
"min largest shortfall", "max phylogenetic diversity",
"max phylogenetic endemism", "max utility"
)
# plot solutions
plot(s, axes = FALSE)
}
Run the code above in your browser using DataLab