Learn R Programming

proportion (version 2.0.0)

ciAASx: Adjusted ArcSine method of CI estimation

Description

Adjusted ArcSine method of CI estimation

Usage

ciAASx(x, n, alp, h)

Arguments

x
- Number of successes
n
- Number of trials
alp
- Alpha value (significance level required)
h
- Adding factor

Value

A dataframe with
x
Number of successes (positive samples)
LAASx
ArcSine Lower limit
UAASx
ArcSine Upper Limit
LABB
ArcSine Lower Abberation
UABB
ArcSine Upper Abberation
ZWI
Zero Width Interval

Details

Wald-type interval for the arcsine transformation of the parameter p for the modified data \(x + h\) and \(n + (2*h)\) , where \(h > 0\) and for the given x and n.

References

[1] 1998 Agresti A and Coull BA. Approximate is better than "Exact" for interval estimation of binomial proportions. The American Statistician: 52; 119 - 126.

[2] 1998 Newcombe RG. Two-sided confidence intervals for the single proportion: Comparison of seven methods. Statistics in Medicine: 17; 857 - 872.

[3] 2008 Pires, A.M., Amado, C. Interval Estimators for a Binomial Proportion: Comparison of Twenty Methods. REVSTAT - Statistical Journal, 6, 165-197.

See Also

prop.test and binom.test for equivalent base Stats R functionality, binom.confint provides similar functionality for 11 methods, wald2ci which provides multiple functions for CI calculation , binom.blaker.limits which calculates Blaker CI which is not covered here and propCI which provides similar functionality.

Other Adjusted methods of CI estimation given x & n: PlotciAAllx, ciAAllx, ciALRx, ciALTx, ciASCx, ciATWx, ciAWDx

Examples

Run this code
x=5; n=5; alp=0.05;h=2
ciAASx(x,n,alp,h)

Run the code above in your browser using DataLab