Learn R Programming

proportion (version 2.0.0)

lengthBA: Expected length and sum of length of Bayesian method

Description

Expected length and sum of length of Bayesian method

Usage

lengthBA(n, alp, a, b, a1, a2)

Arguments

n
- Number of trials
alp
- Alpha value (significance level required)
a
- Beta parameters for hypo "p"
b
- Beta parameters for hypo "p"
a1
- Beta Prior Parameters for Bayesian estimation
a2
- Beta Prior Parameters for Bayesian estimation

Value

A dataframe with
sumLen
The sum of the expected length
explMean
The mean of the expected length
explSD
The Standard Deviation of the expected length
explMax
The max of the expected length
explLL
The Lower limit of the expected length calculated using mean - SD
explUL
The Upper limit of the expected length calculated using mean + SD
method
The method used - Quantile and HPD

Details

Evaluation of Bayesian Highest Probability Density (HPD) and two tailed intervals using sum of length of the \(n + 1\) intervals for the Beta - Binomial conjugate prior model for the probability of success p

References

[1] 1993 Vollset SE. Confidence intervals for a binomial proportion. Statistics in Medicine: 12; 809 - 824.

[2] 1998 Agresti A and Coull BA. Approximate is better than "Exact" for interval estimation of binomial proportions. The American Statistician: 52; 119 - 126.

[3] 1998 Newcombe RG. Two-sided confidence intervals for the single proportion: Comparison of seven methods. Statistics in Medicine: 17; 857 - 872.

[4] 2001 Brown LD, Cai TT and DasGupta A. Interval estimation for a binomial proportion. Statistical Science: 16; 101 - 133.

[5] 2002 Pan W. Approximate confidence intervals for one proportion and difference of two proportions Computational Statistics and Data Analysis 40, 128, 143-157.

[6] 2008 Pires, A.M., Amado, C. Interval Estimators for a Binomial Proportion: Comparison of Twenty Methods. REVSTAT - Statistical Journal, 6, 165-197.

[7] 2014 Martin Andres, A. and Alvarez Hernandez, M. Two-tailed asymptotic inferences for a proportion. Journal of Applied Statistics, 41, 7, 1516-1529

See Also

Other Expected length of base methods: PlotexplAS, PlotexplAll, PlotexplBA, PlotexplEX, PlotexplLR, PlotexplLT, PlotexplSC, PlotexplTW, PlotexplWD, PlotlengthAS, PlotlengthAll, PlotlengthBA, PlotlengthEX, PlotlengthLR, PlotlengthLT, PlotlengthSC, PlotlengthTW, PlotlengthWD, lengthAS, lengthAll, lengthEX, lengthLR, lengthLT, lengthSC, lengthTW, lengthWD

Examples

Run this code
n=5; alp=0.05;a=1;b=1;a1=1;a2=1
lengthBA(n,alp,a,b,a1,a2)

Run the code above in your browser using DataLab