Learn R Programming

protr (version 1.7-4)

extractPSSMAcc: Profile-based protein representation derived by PSSM (Position-Specific Scoring Matrix) and auto cross covariance

Description

This function calculates the feature vector based on the PSSM by running PSI-Blast and auto cross covariance tranformation.

Usage

extractPSSMAcc(pssmmat, lag)

Value

A length lag * 20^2 named numeric vector, the element names are derived by the amino acid name abbreviation (crossed amino acid name abbreviation) and lag index.

Arguments

pssmmat

The PSSM computed by extractPSSM.

lag

The lag parameter. Must be less than the number of amino acids in the sequence (i.e. the number of columns in the PSSM matrix).

Author

Nan Xiao <https://nanx.me>

References

Wold, S., Jonsson, J., Sjorstrom, M., Sandberg, M., & Rannar, S. (1993). DNA and peptide sequences and chemical processes multivariately modelled by principal component analysis and partial least-squares projections to latent structures. Analytica chimica acta, 277(2), 239--253.

See Also

extractPSSM extractPSSMFeature

Examples

Run this code
if (Sys.which("makeblastdb") == "" | Sys.which("psiblast") == "") {
  cat("Cannot find makeblastdb or psiblast. Please install NCBI Blast+")
} else {
  x <- readFASTA(system.file(
    "protseq/P00750.fasta",
    package = "protr"
  ))[[1]]
  dbpath <- tempfile("tempdb", fileext = ".fasta")
  invisible(file.copy(from = system.file(
    "protseq/Plasminogen.fasta",
    package = "protr"
  ), to = dbpath))

  pssmmat <- extractPSSM(seq = x, database.path = dbpath)
  pssmacc <- extractPSSMAcc(pssmmat, lag = 3)
  tail(pssmacc)
}

Run the code above in your browser using DataLab