irt.person.rasch(diff, items)
irt.0p(items,possible=20)
irt.1p(delta,items)
irt.2p(delta,beta,items)
irt.discrim
Basic 1 parameter (Rasch) model considers item difficulties (delta j): p(correct on item j for the ith subject |theta i, deltaj) = 1/(1+exp(deltaj - thetai)) If we have estimates of item difficulty (delta), then we can find theta i by optimization Two parameter model adds item sensitivity (beta j): p(correct on item j for subject i |thetai, deltaj, betaj) = 1/(1+exp(betaj *(deltaj- theta i))) Estimate delta, beta, and theta to maximize fit of model to data.
The procedure used here is to first find the item difficulties assuming theta = 0 Then find theta given those deltas Then find beta given delta and theta.
This is not an "official" way to do IRT, but is useful for basic item development.
irt.item.diff.rasch