# NOT RUN {
#just draw one pair of variables
desc <- describe(attitude)
x <- desc[1,]
y <- desc[2,]
error.crosses(x,y,xlab=rownames(x),ylab=rownames(y))
#now for a bit more complicated plotting
data(bfi)
desc <- describeBy(bfi[1:25],bfi$gender) #select a high and low group
error.crosses(desc$'1',desc$'2',ylab="female scores",xlab="male scores",main="BFI scores by gender")
abline(a=0,b=1)
#do it from summary statistics (using standard errors)
g1.stats <- data.frame(n=c(10,20,30),mean=c(10,12,18),se=c(2,3,5))
g2.stats <- data.frame(n=c(15,20,25),mean=c(6,14,15),se =c(1,2,3))
error.crosses(g1.stats,g2.stats)
#Or, if you prefer to draw +/- 1 sd. instead of 95% confidence
g1.stats <- data.frame(n=c(10,20,30),mean=c(10,12,18),sd=c(2,3,5))
g2.stats <- data.frame(n=c(15,20,25),mean=c(6,14,15),sd =c(1,2,3))
error.crosses(g1.stats,g2.stats,sd=TRUE)
#and seem even fancy plotting: This is taken from a study of mood
#four films were given (sad, horror, neutral, happy)
#with a pre and post test
data(affect)
colors <- c("black","red","green","blue")
films <- c("Sad","Horror","Neutral","Happy")
affect.mat <- describeBy(affect[10:17],affect$Film,mat=TRUE)
error.crosses(affect.mat[c(1:4,17:20),],affect.mat[c(5:8,21:24),],
labels=films[affect.mat$group1],xlab="Energetic Arousal",
ylab="Tense Arousal",colors =
colors[affect.mat$group1],pch=16,cex=2)
# }
Run the code above in your browser using DataLab