# NOT RUN {
data(sat.act)
#The generic plot of variables by group
error.bars.by( SATV + SATQ ~ gender,data=sat.act) #formula input
error.bars.by( SATV + SATQ ~ gender,data=sat.act,v.lab=cs(male,female)) #labels
error.bars.by(SATV + SATQ ~ education + gender, data =sat.act) #see below
error.bars.by(sat.act[1:4],sat.act$gender,legend=7) #specification of variables
error.bars.by(sat.act[1:4],sat.act$gender,legend=7,labels=cs(male,female))
#a bar plot
error.bars.by(sat.act[5:6],sat.act$gender,bars=TRUE,labels=c("male","female"),
main="SAT V and SAT Q by gender",ylim=c(0,800),colors=c("red","blue"),
legend=5,v.labels=c("SATV","SATQ")) #draw a barplot
#a bar plot of SAT by age -- not recommended, see the next plot
error.bars.by(SATV + SATQ ~ education,data=sat.act,bars=TRUE,xlab="Education",
main="95 percent confidence limits of Sat V and Sat Q", ylim=c(0,800),
v.labels=c("SATV","SATQ"),colors=c("red","blue") )
#a better graph uses points not bars
#use formulat input
#plot SAT V and SAT Q by education
error.bars.by(SATV + SATQ ~ education,data=sat.act,TRUE, xlab="Education",
legend=5,labels=colnames(sat.act[5:6]),ylim=c(525,700),
main="self reported SAT scores by education",
v.lab =c("HS","in coll", "< 16", "BA/BS", "in Grad", "Grad/Prof"))
#make the cats eyes semi-transparent by specifying a negative density
error.bars.by(SATV + SATQ ~ education,data=sat.act, xlab="Education",
legend=5,labels=c("SATV","SATQ"),ylim=c(525,700),
main="self reported SAT scores by education",density=-10,
v.lab =c("HS","in coll", "< 16", "BA/BS", "in Grad", "Grad/Prof"))
#use labels to specify the 2nd grouping variable, v.lab to specify the first
error.bars.by(SATV ~ education + gender,data=sat.act, xlab="Education",
legend=5,labels=cs(male,female),ylim=c(525,700),
main="self reported SAT scores by education",density=-10,
v.lab =c("HS","in coll", "< 16", "BA/BS", "in Grad", "Grad/Prof"),
colors=c("red","blue"))
#now for a more complicated examples using 25 big 5 items scored into 5 scales
#and showing age trends by decade
#this shows how to convert many levels of a grouping variable (age) into more manageable levels.
data(bfi) #The Big 5 data
#first create the keys
keys.list <- list(Agree=c(-1,2:5),Conscientious=c(6:8,-9,-10),
Extraversion=c(-11,-12,13:15),Neuroticism=c(16:20),Openness = c(21,-22,23,24,-25))
keys <- make.keys(psychTools::bfi,keys.list)
#then create the scores for those older than 10 and less than 80
bfis <- subset(psychTools::bfi,((psychTools::bfi$age > 10) & (psychTools::bfi$age < 80)))
scores <- scoreItems(keys,bfis,min=1,max=6) #set the right limits for item reversals
#now draw the results by age
error.bars.by(scores$scores,round(bfis$age/10)*10,by.var=TRUE,
main="BFI age trends",legend=3,labels=colnames(scores$scores),
xlab="Age",ylab="Mean item score")
error.bars.by(scores$scores,round(bfis$age/10)*10,by.var=TRUE,
main="BFI age trends",legend=3,labels=colnames(scores$scores),
xlab="Age",ylab="Mean item score",density=-10)
# }
Run the code above in your browser using DataLab