# NOT RUN {
jen <- sim.hierarchical()
f3 <- fa(jen,3,rotate="varimax")
f3 #not a very clean solution
Promax(f3) #this obliquely rotates, but from the varimax target
target.rot(f3) #this obliquely rotates to wards a simple structure target
#compare this rotation with the solution from a targeted rotation aimed for
#an independent cluster solution
#now try a bifactor solution
fb <-fa(jen,3,rotate="bifactor")
fq <- fa(jen,3,rotate="biquartimin")
#Suitbert Ertel has suggested varimin
fm <- fa(jen,3,rotate="varimin") #the Ertel varimin
fn <- fa(jen,3,rotate="none") #just the unrotated factors
#compare them
factor.congruence(list(f3,fb,fq,fm,fn))
# compare an oblimin with a target rotation using the Browne algorithm
#note that we are changing the factor #order (this is for demonstration only)
Targ <- make.keys(9,list(f1=1:3,f2=7:9,f3=4:6))
Targ <- scrub(Targ,isvalue=1) #fix the 0s, allow the NAs to be estimated
Targ <- list(Targ) #input must be a list
#show the target
Targ
fa(Thurstone,3,rotate="TargetQ",Target=Targ) #targeted oblique rotation
#compare with oblimin
f3 <- fa(Thurstone,3)
#now try a targeted orthogonal rotation
Targ <- make.keys(9,list(f1=1:3,f2=7:9,f3=4:6))
faRotate(f3$loadings,rotate="TargetT",Target=list(Targ)) #orthogonal
# }
Run the code above in your browser using DataLab