Learn R Programming

psychmeta (version 2.3.4)

estimate_var_rho_tsa: Taylor Series Approximation of variance of \(\rho\) corrected for psychometric artifacts

Description

Functions to estimate the variance of \(\rho\) corrected for psychometric artifacts. These functions use Taylor series approximations (i.e., the delta method) to estimate the variance in observed effect sizes predictable from the variance in artifact distributions based on the partial derivatives.

The available Taylor-series functions include:

  • estimate_var_rho_tsa_meas Variance of \(\rho\) corrected for measurement error only

  • estimate_var_rho_tsa_uvdrr Variance of \(\rho\) corrected for univariate direct range restriction (i.e., Case II) and measurement error

  • estimate_var_rho_tsa_bvdrr Variance of \(\rho\) corrected for bivariate direct range restriction and measurement error

  • estimate_var_rho_tsa_uvirr Variance of \(\rho\) corrected for univariate indirect range restriction (i.e., Case IV) and measurement error

  • estimate_var_rho_tsa_bvirr Variance of \(\rho\) corrected for bivariate indirect range restriction (i.e., Case V) and measurement error

  • estimate_var_rho_tsa_rb1 Variance of \(\rho\) corrected using Raju and Burke's TSA1 correction for direct range restriction and measurement error

  • estimate_var_rho_tsa_rb2 Variance of \(\rho\) corrected using Raju and Burke's TSA2 correction for direct range restriction and measurement error. Note that a typographical error in Raju and Burke's article has been corrected in this function so as to compute appropriate partial derivatives.

Usage

estimate_var_rho_tsa_meas(mean_rtp, var_rxy, var_e, mean_qx = 1,
  var_qx = 0, mean_qy = 1, var_qy = 0, ...)

estimate_var_rho_tsa_uvdrr(mean_rtpa, var_rxyi, var_e, mean_ux = 1, var_ux = 0, mean_qxa = 1, var_qxa = 0, mean_qyi = 1, var_qyi = 0, ...)

estimate_var_rho_tsa_bvdrr(mean_rtpa, var_rxyi, var_e = 0, mean_ux = 1, var_ux = 0, mean_uy = 1, var_uy = 0, mean_qxa = 1, var_qxa = 0, mean_qya = 1, var_qya = 0, ...)

estimate_var_rho_tsa_uvirr(mean_rtpa, var_rxyi, var_e, mean_ut = 1, var_ut = 0, mean_qxa = 1, var_qxa = 0, mean_qyi = 1, var_qyi = 0, ...)

estimate_var_rho_tsa_bvirr(mean_rtpa, var_rxyi, var_e = 0, mean_ux = 1, var_ux = 0, mean_uy = 1, var_uy = 0, mean_qxa = 1, var_qxa = 0, mean_qya = 1, var_qya = 0, sign_rxz = 1, sign_ryz = 1, ...)

estimate_var_rho_tsa_rb1(mean_rtpa, var_rxyi, var_e, mean_ux = 1, var_ux = 0, mean_rxx = 1, var_rxx = 0, mean_ryy = 1, var_ryy = 0, ...)

estimate_var_rho_tsa_rb2(mean_rtpa, var_rxyi, var_e, mean_ux = 1, var_ux = 0, mean_qx = 1, var_qx = 0, mean_qy = 1, var_qy = 0, ...)

Arguments

mean_rtp

Mean corrected correlation.

var_rxy

Variance of observed correlations.

var_e

Error variance of observed correlations

mean_qx

Mean square root of reliability for X.

var_qx

Variance of square roots of reliability estimates for X.

mean_qy

Mean square root of reliability for Y.

var_qy

Variance of square roots of reliability estimates for Y.

...

Additional arguments.

mean_rtpa

Mean corrected correlation.

var_rxyi

Variance of observed correlations.

mean_ux

Mean observed-score u ratio for X.

var_ux

Variance of observed-score u ratios for X.

mean_qxa

Mean square root of unrestricted reliability for X.

var_qxa

Variance of square roots of unrestricted reliability estimates for X.

mean_qyi

Mean square root of restricted reliability for Y.

var_qyi

Variance of square roots of restricted reliability estimates for Y.

mean_uy

Mean observed-score u ratio for Y.

var_uy

Variance of observed-score u ratios for Y.

mean_qya

Mean square root of unrestricted reliability for Y.

var_qya

Variance of square roots of unrestricted reliability estimates for Y.

mean_ut

Mean true-score u ratio for X.

var_ut

Variance of true-score u ratios for X.

sign_rxz

Sign of the relationship between X and the selection mechanism.

sign_ryz

Sign of the relationship between Y and the selection mechanism.

mean_rxx

Mean reliability for X.

var_rxx

Variance of reliability estimates for X.

mean_ryy

Mean reliability for Y.

var_ryy

Variance of reliability estimates for Y.

Value

Vector of meta-analytic variances estimated via Taylor series approximation.

Notes

A typographical error in Raju and Burke's article has been corrected in estimate_var_rho_tsa_rb2 so as to compute appropriate partial derivatives.

Details

######## Measurement error only ########

The attenuation formula for measurement error is

$$\rho_{XY}=\rho_{TP}q_{X}q_{Y}$$ where \(\rho_{XY}\) is an observed correlation, \(\rho_{TP}\) is a true-score correlation, and \(q_{X}\) and \(q_{Y}\) are the square roots of reliability coefficients for X and Y, respectively.

The Taylor series approximation of the variance of \(\rho_{TP}\) can be computed using the following linear equation,

$$var_{\rho_{TP}} \approx \left[var_{r_{XY}}-var_{e}-\left(b_{1}^{2}var_{q_{X}}+b_{2}^{2}var_{q_{Y}}\right)\right]/b_{3}^{2}$$

where \(b_{1}\), \(b_{2}\), and \(b_{3}\) are first-order partial derivatives of the attenuation formula with respect to \(q_{X}\), \(q_{Y}\), and \(\rho_{TP}\), respectively. The first-order partial derivatives of the attenuation formula are:

$$b_{1}=\frac{\partial\rho_{XY}}{\partial q_{X}}=\rho_{TP}q_{Y}$$ $$b_{2}=\frac{\partial\rho_{XY}}{\partial q_{Y}}=\rho_{TP}q_{X}$$ $$b_{3}=\frac{\partial\rho_{XY}}{\partial\rho_{TP}}=q_{X}q_{Y}$$

######## Univariate direct range restriction (UVDRR; i.e., Case II) ########

The UVDRR attenuation procedure may be represented as

$$\rho_{XY_{i}}=\frac{\rho_{TP_{a}}q_{Y_{i}}q_{X_{a}}u_{X}}{\sqrt{\rho_{TP_{a}}^{2}q_{X_{a}}^{2}\left(u_{X}^{2}-1\right)+1}}$$

The attenuation formula can also be represented as:

$$\rho_{XY_{i}}=\rho_{TP_{a}}q_{Y_{i}}q_{X_{a}}u_{X}A$$

where

$$A=\frac{1}{\sqrt{\rho_{TP_{a}}^{2}q_{X_{a}}^{2}\left(u_{X}^{2}-1\right)+1}}$$

The Taylor series approximation of the variance of \(\rho_{TP_{a}}\) can be computed using the following linear equation,

$$var_{\rho_{TP_{a}}} \approx \left[var_{r_{XY_{i}}}-var_{e}-\left(b_{1}^{2}var_{q_{X_{a}}}+b_{2}^{2}var_{q_{Y_{i}}}+b_{3}^{2}var_{u_{X}}\right)\right]/b_{4}^{2}$$

where \(b_{1}\), \(b_{2}\), \(b_{3}\), and \(b_{4}\) are first-order partial derivatives of the attenuation formula with respect to \(q_{X_{a}}\), \(q_{Y_{i}}\), \(u_{X}\), and \(\rho_{TP_{a}}\), respectively. The first-order partial derivatives of the attenuation formula are:

$$b_{1}=\frac{\partial\rho_{XY_{i}}}{\partial q_{X_{a}}}=\rho_{TP_{a}}q_{Y_{i}}u_{X}A^{3}$$ $$b_{2}=\frac{\partial\rho_{XY_{i}}}{\partial q_{Y_{i}}}=\frac{\rho_{XY_{i}}}{q_{Y_{i}}}$$ $$b_{3}=\frac{\partial\rho_{XY_{i}}}{\partial u_{X}}=-\rho_{TP_{a}}q_{Y_{i}}q_{X_{a}}\left(\rho_{TP_{a}}^{2}q_{X_{a}}^{2}-1\right)A^{3}$$ $$b_{4}=\frac{\partial\rho_{XY_{i}}}{\partial\rho_{TP_{a}}}=q_{Y_{i}}q_{X_{a}}u_{X}A^{3}$$

######## Univariate indirect range restriction (UVIRR; i.e., Case IV) ########

Under univariate indirect range restriction, the attenuation formula yielding \(\rho_{XY_{i}}\) is:

$$\rho_{XY_{i}}=\frac{u_{T}q_{X_{a}}}{\sqrt{u_{T}^{2}q_{X_{a}}^{2}+1-q_{X_{a}}^{2}}}\frac{u_{T}\rho_{TP_{a}}}{\sqrt{u_{T}^{2}\rho_{TP_{a}}^{2}+1-\rho_{TP_{a}}^{2}}}$$

The attenuation formula can also be represented as:

$$\rho_{XY_{i}}=q_{X_{a}}q_{Y_{i}}\rho_{TP_{a}}u_{T}^{2}AB$$

where

$$A=\frac{1}{\sqrt{u_{T}^{2}q_{X_{a}}^{2}+1-q_{X_{a}}^{2}}}$$

and

$$B=\frac{1}{\sqrt{u_{T}^{2}\rho_{TP_{a}}^{2}+1-\rho_{TP_{a}}^{2}}}$$

The Taylor series approximation of the variance of \(\rho_{TP_{a}}\) can be computed using the following linear equation,

$$var_{\rho_{TP_{a}}} \approx \left[var_{r_{XY_{i}}}-var_{e}-\left(b_{1}^{2}var_{q_{X_{a}}}+b_{2}^{2}var_{q_{Y_{i}}}+b_{3}^{2}var_{u_{T}}\right)\right]/b_{4}^{2}$$

where \(b_{1}\), \(b_{2}\), \(b_{3}\), and \(b_{4}\) are first-order partial derivatives of the attenuation formula with respect to \(q_{X_{a}}\), \(q_{Y_{i}}\), \(u_{T}\), and \(\rho_{TP_{a}}\), respectively. The first-order partial derivatives of the attenuation formula are:

$$b_{1}=\frac{\partial\rho_{XY_{i}}}{\partial q_{X_{a}}}=\frac{\rho_{XY_{i}}}{q_{X_{a}}}-\rho_{XY_{i}}q_{X_{a}}B^{2}\left(u_{T}^{2}-1\right)$$ $$b_{2}=\frac{\partial\rho_{XY_{i}}}{\partial q_{Y_{i}}}=\frac{\rho_{XY_{i}}}{q_{Y_{i}}}$$ $$b_{3}=\frac{\partial\rho_{XY_{i}}}{\partial u_{T}}=\frac{2\rho_{XY_{i}}}{u_{T}}-\rho_{XY_{i}}u_{T}q_{X_{a}}^{2}B^{2}-\rho_{XY_{i}}u_{T}\rho_{TP_{a}}^{2}A^{2}$$ $$b_{4}=\frac{\partial\rho_{XY_{i}}}{\partial\rho_{TP_{a}}}=\frac{\rho_{XY_{i}}}{\rho_{TP_{a}}}-\rho_{XY_{i}}\rho_{TP_{a}}A^{2}\left(u_{T}^{2}-1\right)$$

######## Bivariate direct range restriction (BVDRR) ########

Under bivariate direct range restriction, the attenuation formula yielding \(\rho_{XY_{i}}\) is:

$$\rho_{XY_{i}}=\frac{A+\rho_{TP_{a}}^{2}q_{X_{a}}q_{Y_{a}}-\frac{1}{q_{X_{a}}q_{Y_{a}}}}{2\rho_{TP_{a}}u_{X}u_{Y}}$$

where

$$A=\sqrt{\left(\frac{1}{q_{X_{a}}q_{Y_{a}}}-\rho_{TP_{a}}^{2}q_{X_{a}}q_{Y_{a}}\right)^{2}+4\rho_{TP_{a}}u_{X}^{2}u_{Y}^{2}}$$

The Taylor series approximation of the variance of \(\rho_{TP_{a}}\) can be computed using the following linear equation,

$$var_{\rho_{TP_{a}}} \approx \left[var_{r_{XY_{i}}}-var_{e}-\left(b_{1}^{2}var_{q_{X_{a}}}+b_{2}^{2}var_{q_{Y_{i}}}+b_{3}^{2}var_{u_{X}}+b_{4}^{2}var_{u_{Y}}\right)\right]/b_{5}^{2}$$

where \(b_{1}\), \(b_{2}\), \(b_{3}\), \(b_{4}\), and \(b_{5}\) are first-order partial derivatives of the attenuation formula with respect to \(q_{X_{a}}\), \(q_{Y_{a}}\), \(u_{X}\), \(u_{Y}\), and \(\rho_{TP_{a}}\), respectively. First, we define terms to simplify the computation of partial derivatives:

$$B=\left(\rho_{TP_{a}}^{2}q_{X_{a}}^{2}q_{Y_{a}}^{2}+q_{X_{a}}q_{Y_{a}}A-1\right)$$

$$C=2\rho_{TP_{a}}q_{X_{a}}^{2}q_{Y_{a}}^{2}u_{X}u_{Y}A$$

The first-order partial derivatives of the attenuation formula are:

$$b_{1}=\frac{\partial\rho_{XY_{i}}}{\partial q_{X_{a}}}=\frac{\left(\rho_{TP_{a}}^{2}q_{X_{a}}^{2}q_{Y_{a}}^{2}+1\right)B}{q_{X_{a}}C}$$ $$b_{2}=\frac{\partial\rho_{XY_{i}}}{\partial q_{Y_{i}}}=\frac{\left(\rho_{TP_{a}}^{2}q_{X_{a}}^{2}q_{Y_{a}}^{2}+1\right)B}{q_{Y_{a}}C}$$ $$b_{3}=\frac{\partial\rho_{XY_{i}}}{\partial u_{X}}=-\frac{\left(\rho_{TP_{a}}q_{X_{a}}q_{Y_{a}}-1\right)\left(\rho_{TP_{a}}q_{X_{a}}q_{Y_{a}}+1\right)B}{u_{X}C}$$ $$b_{4}=\frac{\partial\rho_{XY_{i}}}{\partial u_{Y}}=-\frac{\left(\rho_{TP_{a}}q_{X_{a}}q_{Y_{a}}-1\right)\left(\rho_{TP_{a}}q_{X_{a}}q_{Y_{a}}+1\right)B}{u_{Y}C}$$ $$b_{5}=\frac{\partial\rho_{XY_{i}}}{\partial\rho_{TP_{a}}}=\frac{\left(\rho_{TP_{a}}^{2}q_{X_{a}}^{2}q_{Y_{a}}^{2}+1\right)B}{\rho_{TP_{a}}C}$$

######## Bivariate indirect range restriction (BVIRR; i.e., Case V) ########

Under bivariate indirect range restriction, the attenuation formula yielding \(\rho_{XY_{i}}\) is:

$$\rho_{XY_{i}}=\frac{\rho_{TP_{a}}q_{X_{a}}q_{Y_{a}}-\lambda\sqrt{\left|1-u_{X}^{2}\right|\left|1-u_{Y}^{2}\right|}}{u_{X}u_{Y}}$$

The Taylor series approximation of the variance of \(\rho_{TP_{a}}\) can be computed using the following linear equation,

$$var_{\rho_{TP_{a}}} \approx \left[var_{r_{XY_{i}}}-var_{e}-\left(b_{1}^{2}var_{q_{X_{a}}}+b_{2}^{2}var_{q_{Y_{i}}}+b_{3}^{2}var_{u_{X}}+b_{4}^{2}var_{u_{Y}}\right)\right]/b_{5}^{2}$$

where \(b_{1}\), \(b_{2}\), \(b_{3}\), \(b_{4}\), and \(b_{5}\) are first-order partial derivatives of the attenuation formula with respect to \(q_{X_{a}}\), \(q_{Y_{a}}\), \(u_{X}\), \(u_{Y}\), and \(\rho_{TP_{a}}\), respectively. First, we define terms to simplify the computation of partial derivatives:

$$b_{1}=\frac{\partial\rho_{XY_{i}}}{\partial q_{X_{a}}}=\frac{\rho_{TP_{a}}q_{Y_{a}}}{u_{X}u_{Y}}$$ $$b_{2}=\frac{\partial\rho_{XY_{i}}}{\partial q_{Y_{i}}}=\frac{\rho_{TP_{a}}q_{X_{a}}}{u_{X}u_{Y}}$$ $$b_{3}=\frac{\partial\rho_{XY_{i}}}{\partial u_{X}}=\frac{\lambda\left(1-u_{X}^{2}\right)\sqrt{\left|1-u_{Y}^{2}\right|}}{u_{Y}\left|1-u_{X}^{2}\right|^{1.5}}-\frac{\rho_{XY_{i}}}{u_{X}}$$ $$b_{4}=\frac{\partial\rho_{XY_{i}}}{\partial u_{Y}}=\frac{\lambda\left(1-u_{Y}^{2}\right)\sqrt{\left|1-u_{X}^{2}\right|}}{u_{X}\left|1-u_{Y}^{2}\right|^{1.5}}-\frac{\rho_{XY_{i}}}{u_{Y}}$$ $$b_{5}=\frac{\partial\rho_{XY_{i}}}{\partial\rho_{TP_{a}}}=\frac{q_{X_{a}}q_{Y_{a}}}{u_{X}u_{Y}}$$

######## Raju and Burke's TSA1 procedure ########

Raju and Burke's attenuation formula may be represented as

$$\rho_{XY_{i}}=\frac{\rho_{TP_{a}}u_{X}\sqrt{\rho_{XX_{a}}\rho_{YY_{a}}}}{\sqrt{\rho_{TP_{a}}^{2}\rho_{XX_{a}}\rho_{YY_{a}}u_{X}^{2}-\rho_{TP_{a}}^{2}\rho_{XX_{a}}\rho_{YY_{a}}+1}}$$

The Taylor series approximation of the variance of \(\rho_{TP_{a}}\) can be computed using the following linear equation,

$$var_{\rho_{TP_{a}}} \approx \left[var_{r_{XY_{i}}}-var_{e}-\left(B^{2}var_{\rho_{YY_{a}}}+C^{2}var_{\rho_{XX_{a}}}+D^{2}var_{u_{X}}\right)\right]/A^{2}$$

where A, B, C, and D are first-order partial derivatives of the attenuation formula with respect to \(\rho_{TP_{a}}\), \(\rho_{XX_{a}}\), \(\rho_{YY_{a}}\), and \(u_{X}\), respectively. The first-order partial derivatives of the attenuation formula are:

$$A=\frac{\partial\rho_{XY_{i}}}{\partial\rho_{TP_{a}}}=\frac{\rho_{XY_{i}}}{\rho_{TP_{a}}}+\frac{\rho_{XY_{i}\left(1-u_{X}^{2}\right)}^{3}}{\rho_{TP_{a}}u_{X}^{2}}$$ $$B=\frac{\partial\rho_{XY_{i}}}{\partial\rho_{YY_{a}}}=\frac{1}{2}\left(\frac{\rho_{XY_{i}}}{\rho_{YY_{a}}}+\frac{\rho_{XY_{i}\left(1-u_{X}^{2}\right)}^{3}}{\rho_{YY_{a}}u_{X}^{2}}\right)$$ $$C=\frac{\partial\rho_{XY_{i}}}{\partial\rho_{XX_{a}}}=\frac{1}{2}\left(\frac{\rho_{XY_{i}}}{\rho_{XX_{a}}}+\frac{\rho_{XY_{i}\left(1-u_{X}^{2}\right)}^{3}}{\rho_{XX_{a}}u_{X}^{2}}\right)$$ $$D=\frac{\partial\rho_{XY_{i}}}{\partial u_{X}}=\frac{\rho_{XY_{i}}-\rho_{XY_{i}}^{3}}{u_{X}}$$

######## Raju and Burke's TSA2 procedure ########

Raju and Burke's attenuation formula may be represented as

$$\rho_{XY_{i}}=\frac{\rho_{TP_{a}}q_{X_{a}}q_{Y_{a}}u_{X}}{\sqrt{\rho_{TP_{a}}^{2}q_{X_{a}}^{2}q_{Y_{a}}^{2}u_{X}^{2}-\rho_{TP_{a}}^{2}q_{X_{a}}^{2}q_{Y_{a}}^{2}+1}}$$

The Taylor series approximation of the variance of \(\rho_{TP_{a}}\) can be computed using the following linear equation,

$$var_{\rho_{TP_{a}}} \approx \left[var_{r_{XY_{i}}}-var_{e}-\left(F^{2}var_{q_{Y_{a}}}+G^{2}var_{q_{X_{a}}}+H^{2}var_{u_{X}}\right)\right]/E^{2}$$

where E, F, G, and H are first-order partial derivatives of the attenuation formula with respect to \(\rho_{TP_{a}}\), \(q_{X_{a}}\), \(q_{Y_{a}}\), and \(u_{X}\), respectively. The first-order partial derivatives of the attenuation formula (with typographic errors in the original article corrected) are:

$$E=\frac{\partial\rho_{XY_{i}}}{\partial\rho_{TP_{a}}}=\frac{\rho_{XY_{i}}}{\rho_{TP_{a}}}+\frac{\rho_{XY_{i}\left(1-u_{X}^{2}\right)}^{3}}{\rho_{TP_{a}}u_{X}^{2}}$$ $$F=\frac{\partial\rho_{XY_{i}}}{\partial q_{Y_{a}}}=\frac{\rho_{XY_{i}}}{q_{Y_{a}}}+\frac{\rho_{XY_{i}\left(1-u_{X}^{2}\right)}^{3}}{q_{Y_{a}}u_{X}^{2}}$$ $$G=\frac{\partial\rho_{XY_{i}}}{\partial q_{X_{a}}}=\frac{\rho_{XY_{i}}}{q_{X_{a}}}+\frac{\rho_{XY_{i}\left(1-u_{X}^{2}\right)}^{3}}{q_{X_{a}}u_{X}^{2}}$$ $$H=\frac{\partial\rho_{XY_{i}}}{\partial u_{X}}=\frac{\rho_{XY_{i}}-\rho_{XY_{i}}^{3}}{u_{X}}$$

References

Dahlke, J. A., & Wiernik, B. M. (2018). One of these artifacts is not like the others: Accounting for indirect range restriction in organizational and psychological research. Manuscript submitted for review.

Hunter, J. E., Schmidt, F. L., & Le, H. (2006). Implications of direct and indirect range restriction for meta-analysis methods and findings. Journal of Applied Psychology, 91(3), 594<U+2013>612. https://doi.org/10.1037/0021-9010.91.3.594

Raju, N. S., & Burke, M. J. (1983). Two new procedures for studying validity generalization. Journal of Applied Psychology, 68(3), 382<U+2013>395. https://doi.org/10.1037/0021-9010.68.3.382

Examples

Run this code
# NOT RUN {
estimate_var_rho_tsa_meas(mean_rtp = .5, var_rxy = .02, var_e = .01,
                 mean_qx = .8, var_qx = .005,
                 mean_qy = .8, var_qy = .005)
estimate_var_rho_tsa_uvdrr(mean_rtpa = .5, var_rxyi = .02, var_e = .01,
                  mean_ux = .8, var_ux = .005,
                  mean_qxa = .8, var_qxa = .005,
                  mean_qyi = .8, var_qyi = .005)
estimate_var_rho_tsa_bvdrr(mean_rtpa = .5, var_rxyi = .02, var_e = .01,
                  mean_ux = .8, var_ux = .005,
                  mean_uy = .8, var_uy = .005,
                  mean_qxa = .8, var_qxa = .005,
                  mean_qya = .8, var_qya = .005)
estimate_var_rho_tsa_uvirr(mean_rtpa = .5, var_rxyi = .02, var_e = .01,
                  mean_ut = .8, var_ut = .005,
                  mean_qxa = .8, var_qxa = .005,
                  mean_qyi = .8, var_qyi = .005)
estimate_var_rho_tsa_bvirr(mean_rtpa = .5, var_rxyi = .02, var_e = .01,
                  mean_ux = .8, var_ux = .005,
                  mean_uy = .8, var_uy = .005,
                  mean_qxa = .8, var_qxa = .005,
                  mean_qya = .8, var_qya = .005,
                  sign_rxz = 1, sign_ryz = 1)
estimate_var_rho_tsa_rb1(mean_rtpa = .5, var_rxyi = .02, var_e = .01,
                mean_ux = .8, var_ux = .005,
                mean_rxx = .8, var_rxx = .005,
                mean_ryy = .8, var_ryy = .005)
estimate_var_rho_tsa_rb2(mean_rtpa = .5, var_rxyi = .02, var_e = .01,
                mean_ux = .8, var_ux = .005,
                mean_qx = .8, var_qx = .005,
                mean_qy = .8, var_qy = .005)
# }

Run the code above in your browser using DataLab