# NOT RUN {
## Run meta-analysis:
ma_obj <- ma_r(ma_method = "ic", rxyi = rxyi, n = n, rxx = rxxi, ryy = ryyi,
construct_x = x_name, construct_y = y_name,
sample_id = sample_id, citekey = NULL,
moderators = moderator, data = data_r_meas_multi,
impute_artifacts = FALSE, clean_artifacts = FALSE)
ma_obj <- ma_r_ad(ma_obj, correct_rr_x = FALSE, correct_rr_y = FALSE)
## Run additional analyses:
ma_obj <- heterogeneity(ma_obj)
ma_obj <- sensitivity(ma_obj, boot_iter = 10, boot_ci_type = "norm")
ma_obj <- metareg(ma_obj)
ma_obj <- plot_funnel(ma_obj)
ma_obj <- plot_forest(ma_obj)
## View summary:
summary(ma_obj)
## Extract selected analyses:
get_metatab(ma_obj)
get_matrix(ma_obj)
get_escalc(ma_obj)
get_bootstrap(ma_obj)
get_cumulative(ma_obj)
get_leave1out(ma_obj)
get_heterogeneity(ma_obj)
get_metareg(ma_obj)
get_plots(ma_obj)
get_ad(ma_obj, ma_method = "ic", as_ad_obj = TRUE)
get_ad(ma_obj, ma_method = "ic", as_ad_obj = FALSE)
## Same extractions as above, but using get_stuff() and the "what" argument:
get_stuff(ma_obj, what = "metatab")
get_stuff(ma_obj, what = "matrix")
get_stuff(ma_obj, what = "escalc")
get_stuff(ma_obj, what = "bootstrap")
get_stuff(ma_obj, what = "cumulative")
get_stuff(ma_obj, what = "leave1out")
get_stuff(ma_obj, what = "heterogeneity")
get_stuff(ma_obj, what = "metareg")
get_stuff(ma_obj, what = "plots")
get_stuff(ma_obj, what = "ad", ma_method = "ic", as_ad_obj = TRUE)
get_stuff(ma_obj, what = "ad", ma_method = "ic", as_ad_obj = FALSE)
# }
Run the code above in your browser using DataLab