The formula to estimate a correlation between one composite variable and one external variable is:
_Xy=_x_iy1k_x+k_x-1k_x_x_ix_jr_composite = mean_rxy / sqrt(((1 / k_vars_x) + ((k_vars_x - 1) / k_vars_x) * mean_intercor_x))
and the formula to estimate the correlation between two composite variables is:
_XY=_x_iy_j1k_x+k-1k_x_x_ix_j1k_y+k_y-1k_y_y_iy_jr_composite = mean_rxy / sqrt(((1 / k_vars_x) + ((k_vars_x - 1) / k_vars_x) * mean_intercor_x) * ((1 / k_vars_y) + ((k_vars_y - 1) / k_vars_y) * mean_intercor_y))
where _x_iymean_r and _x_iyjmean_r are mean correlations between the x variables and the y variable(s),
_x_ix_jmean_intercor_x is the mean correlation among x variables,
_y_iy_jmean_intercor_y is the mean correlation among y variables,
k_xk_vars_x is the number of x variables, and k_yk_vars_y is the number of y variables.