Learn R Programming

psychmeta (version 2.6.4)

estimate_artifacts: Estimation of applicant and incumbent reliabilities and of true- and observed-score u ratios

Description

Functions to estimate the values of artifacts from other artifacts. These functions allow for reliability estimates to be corrected/attenuated for range restriction and allow u ratios to be converted between observed-score and true-score metrics. Some functions also allow for the extrapolation of an artifact from other available information.

Available functions include:

  • estimate_rxxa
    Estimate the applicant reliability of variable X from X's incumbent reliability value and X's observed-score or true-score u ratio.

  • estimate_rxxa_u
    Estimate the applicant reliability of variable X from X's observed-score and true-score u ratios.

  • estimate_rxxi
    Estimate the incumbent reliability of variable X from X's applicant reliability value and X's observed-score or true-score u ratio.

  • estimate_rxxi_u
    Estimate the incumbent reliability of variable X from X's observed-score and true-score u ratios.

  • estimate_ux
    Estimate the true-score u ratio for variable X from X's reliability coefficient and X's observed-score u ratio.

  • estimate_uy
    Estimate the observed-score u ratio for variable X from X's reliability coefficient and X's true-score u ratio.

  • estimate_ryya
    Estimate the applicant reliability of variable Y from Y's incumbent reliability value, Y's correlation with X, and X's u ratio.

  • estimate_ryyi
    Estimate the incumbent reliability of variable Y from Y's applicant reliability value, Y's correlation with X, and X's u ratio.

  • estimate_uy
    Estimate the observed-score u ratio for variable Y from Y's applicant and incumbent reliability coefficients.

  • estimate_up
    Estimate the true-score u ratio for variable Y from Y's applicant and incumbent reliability coefficients.

Usage

estimate_rxxa(
  rxxi,
  ux,
  ux_observed = TRUE,
  indirect_rr = TRUE,
  rxxi_type = "alpha"
)

estimate_rxxi( rxxa, ux, ux_observed = TRUE, indirect_rr = TRUE, rxxa_type = "alpha" )

estimate_ut(ux, rxx, rxx_restricted = TRUE)

estimate_ux(ut, rxx, rxx_restricted = TRUE)

estimate_ryya(ryyi, rxyi, ux)

estimate_ryyi(ryya, rxyi, ux)

estimate_uy(ryyi, ryya, indirect_rr = TRUE, ryy_type = "alpha")

estimate_up(ryyi, ryya)

estimate_rxxa_u(ux, ut)

estimate_rxxi_u(ux, ut)

Value

A vector of estimated artifact values.

Arguments

rxxi

Vector of incumbent reliability estimates for X.

ux

Vector of observed-score u ratios for X (if used in the context of estimating a reliability value, a true-score u ratio may be supplied by setting ux_observed to FALSE).

ux_observed

Logical vector determining whether each element of ux is an observed-score u ratio (TRUE) or a true-score u ratio (FALSE).

indirect_rr

Logical vector determining whether each reliability value is associated with indirect range restriction (TRUE) or direct range restriction (FALSE).

rxxi_type, rxxa_type, ryy_type

String vector identifying the types of reliability estimates supplied (e.g., "alpha", "retest", "interrater_r", "splithalf"). See the documentation for ma_r for a full list of acceptable reliability types.

rxxa

Vector of applicant reliability estimates for X.

rxx

Vector of reliability estimates for X (used in the context of estimating ux and ut - specify that reliability is an incumbent value by setting rxx_restricted to FALSE).

rxx_restricted

Logical vector determining whether each element of rxx is an incumbent reliability (TRUE) or an applicant reliability (FALSE).

ut

Vector of true-score u ratios for X.

ryyi

Vector of incumbent reliability estimates for Y.

rxyi

Vector of observed-score incumbent correlations between X and Y.

ryya

Vector of applicant reliability estimates for Y.

Details

#### Formulas to estimate rxxa ####

Formulas for indirect range restriction: _XX_a=1-u_X^2(1-_XX_i)rxxa = 1 - ux^2 * (1 - rxxi) _XX_a=_XX_i_XX_i+u_T^2-_XX_iu_T^2rxxa = rxxi / (rxxi + ut^2 - rxxi * ut^2)

Formula for direct range restriction: _XX_a=_XX_iu_X^2[1+_XX_i(1u_X^2-1)]rxxa = rxxi / (ux^2 * (1 + rxxi * (ux^-2 - 1)))

#### Formulas to estimate rxxi ####

Formulas for indirect range restriction: _XX_i=1-1-_XX_au_X^21 - (1 - rxxa) / ux^2 _XX_i=1-1-_XX_a_XX_a[u_T^2-(1-1_XX_a)]rxxi = 1 - (1 - rxxa) / (rxxa * (ut^2 - (1 - 1 / rxxa)))

Formula for direct range restriction: _XX_i=_XX_iu_X^21+_XX_i(u_X^2-1)rxxi = (rxxa * ux^2) / (1 + rxxa * (ux^2 - 1))

#### Formulas to estimate ut ####

u_T=_XX_iu_X^21+_XX_iu_X^2-u_X^2ut = sqrt((rxxi * ux^2) / (1 + rxxi * ux^2 - ux^2)) u_T=u_X^2-(1-_XX_a)_XX_aut = sqrt((ux^2 - (1 - rxxa)) / rxxa)

#### Formulas to estimate ux #### u_X=u_T^2_XX_i(1+u_T^2_XX_i-u_T^2)ux = sqrt(ut^2 / (rxxi * (1 + ut^2 / rxxi - ut^2))) u_X=_XX_a[u_T^2-(1-1_XX_a)]ux = sqrt((ut^2 - (1 - 1 / rxxa)) * rxxa)

#### Formula to estimate ryya ####

_YY_a=1-1-_YY_i1-_XY_i^2(1-1u_X^2)ryya = 1 - (1 - ryyi) / (1 - rxyi^2 * (1 - ux^-2))

#### Formula to estimate ryyi _YY_i=1-(1-_YY_a)[1-_XY_i^2(1-1u_X^2)]ryyi = 1 - (1 - ryya) * (1 - rxyi^2 * (1 - ux^-2))

#### Formula to estimate uy #### u_Y=1-_YY_a1-_YY_iuy = sqrt((1 - ryya) / (1 - ryyi)

#### Formula to estimate up #### u_P=1-_YY_a1-_YY_i-(1-_YY_a)_YY_aup = sqrt(((1 - ryya) / (1 - ryyi) - (1 - ryya)) / ryya)

References

Schmidt, F. L., & Hunter, J. E. (2015). Methods of meta-analysis: Correcting error and bias in research findings (3rd ed.). Sage. tools:::Rd_expr_doi("10.4135/9781483398105") p. 127.

Le, H., & Schmidt, F. L. (2006). Correcting for indirect range restriction in meta-analysis: Testing a new meta-analytic procedure. Psychological Methods, 11(4), 416–438. tools:::Rd_expr_doi("10.1037/1082-989X.11.4.416")

Hunter, J. E., Schmidt, F. L., & Le, H. (2006). Implications of direct and indirect range restriction for meta-analysis methods and findings. Journal of Applied Psychology, 91(3), 594–612. tools:::Rd_expr_doi("10.1037/0021-9010.91.3.594")

Le, H., Oh, I.-S., Schmidt, F. L., & Wooldridge, C. D. (2016). Correction for range restriction in meta-analysis revisited: Improvements and implications for organizational research. Personnel Psychology, 69(4), 975–1008. tools:::Rd_expr_doi("10.1111/peps.12122")

Examples

Run this code
estimate_rxxa(rxxi = .8, ux = .8, ux_observed = TRUE)
estimate_rxxi(rxxa = .8, ux = .8, ux_observed = TRUE)
estimate_ut(ux = .8, rxx = .8, rxx_restricted = TRUE)
estimate_ux(ut = .8, rxx = .8, rxx_restricted = TRUE)
estimate_ryya(ryyi = .8, rxyi = .3, ux = .8)
estimate_ryyi(ryya = .8, rxyi = .3, ux = .8)
estimate_uy(ryyi = c(.5, .7), ryya = c(.7, .8))
estimate_up(ryyi = c(.5, .7), ryya = c(.7, .8))
estimate_rxxa_u(ux = c(.7, .8), ut = c(.65, .75))
estimate_rxxi_u(ux = c(.7, .8), ut = c(.65, .75))

Run the code above in your browser using DataLab