Learn R Programming

psychmeta (version 2.6.4)

estimate_var_rho_tsa: Taylor Series Approximation of variance of corrected for psychometric artifacts

Description

Functions to estimate the variance of corrected for psychometric artifacts. These functions use Taylor series approximations (i.e., the delta method) to estimate the variance in observed effect sizes predictable from the variance in artifact distributions based on the partial derivatives.

The available Taylor-series functions include:

  • estimate_var_rho_tsa_meas
    Variance of corrected for measurement error only

  • estimate_var_rho_tsa_uvdrr
    Variance of corrected for univariate direct range restriction (i.e., Case II) and measurement error

  • estimate_var_rho_tsa_bvdrr
    Variance of corrected for bivariate direct range restriction and measurement error

  • estimate_var_rho_tsa_uvirr
    Variance of corrected for univariate indirect range restriction (i.e., Case IV) and measurement error

  • estimate_var_rho_tsa_bvirr
    Variance of corrected for bivariate indirect range restriction (i.e., Case V) and measurement error

  • estimate_var_rho_tsa_rb1
    Variance of corrected using Raju and Burke's TSA1 correction for direct range restriction and measurement error

  • estimate_var_rho_tsa_rb2
    Variance of corrected using Raju and Burke's TSA2 correction for direct range restriction and measurement error. Note that a typographical error in Raju and Burke's article has been corrected in this function so as to compute appropriate partial derivatives.

Usage

estimate_var_rho_tsa_meas(
  mean_rtp,
  var_rxy,
  var_e,
  mean_qx = 1,
  var_qx = 0,
  mean_qy = 1,
  var_qy = 0,
  ...
)

estimate_var_rho_tsa_uvdrr( mean_rtpa, var_rxyi, var_e, mean_ux = 1, var_ux = 0, mean_qxa = 1, var_qxa = 0, mean_qyi = 1, var_qyi = 0, ... )

estimate_var_rho_tsa_bvdrr( mean_rtpa, var_rxyi, var_e = 0, mean_ux = 1, var_ux = 0, mean_uy = 1, var_uy = 0, mean_qxa = 1, var_qxa = 0, mean_qya = 1, var_qya = 0, ... )

estimate_var_rho_tsa_uvirr( mean_rtpa, var_rxyi, var_e, mean_ut = 1, var_ut = 0, mean_qxa = 1, var_qxa = 0, mean_qyi = 1, var_qyi = 0, ... )

estimate_var_rho_tsa_bvirr( mean_rtpa, var_rxyi, var_e = 0, mean_ux = 1, var_ux = 0, mean_uy = 1, var_uy = 0, mean_qxa = 1, var_qxa = 0, mean_qya = 1, var_qya = 0, sign_rxz = 1, sign_ryz = 1, ... )

estimate_var_rho_tsa_rb1( mean_rtpa, var_rxyi, var_e, mean_ux = 1, var_ux = 0, mean_rxx = 1, var_rxx = 0, mean_ryy = 1, var_ryy = 0, ... )

estimate_var_rho_tsa_rb2( mean_rtpa, var_rxyi, var_e, mean_ux = 1, var_ux = 0, mean_qx = 1, var_qx = 0, mean_qy = 1, var_qy = 0, ... )

Value

Vector of meta-analytic variances estimated via Taylor series approximation.

Arguments

mean_rtp

Mean corrected correlation.

var_rxy

Variance of observed correlations.

var_e

Error variance of observed correlations

mean_qx

Mean square root of reliability for X.

var_qx

Variance of square roots of reliability estimates for X.

mean_qy

Mean square root of reliability for Y.

var_qy

Variance of square roots of reliability estimates for Y.

...

Additional arguments.

mean_rtpa

Mean corrected correlation.

var_rxyi

Variance of observed correlations.

mean_ux

Mean observed-score u ratio for X.

var_ux

Variance of observed-score u ratios for X.

mean_qxa

Mean square root of unrestricted reliability for X.

var_qxa

Variance of square roots of unrestricted reliability estimates for X.

mean_qyi

Mean square root of restricted reliability for Y.

var_qyi

Variance of square roots of restricted reliability estimates for Y.

mean_uy

Mean observed-score u ratio for Y.

var_uy

Variance of observed-score u ratios for Y.

mean_qya

Mean square root of unrestricted reliability for Y.

var_qya

Variance of square roots of unrestricted reliability estimates for Y.

mean_ut

Mean true-score u ratio for X.

var_ut

Variance of true-score u ratios for X.

sign_rxz

Sign of the relationship between X and the selection mechanism.

sign_ryz

Sign of the relationship between Y and the selection mechanism.

mean_rxx

Mean reliability for X.

var_rxx

Variance of reliability estimates for X.

mean_ryy

Mean reliability for Y.

var_ryy

Variance of reliability estimates for Y.

Notes

A typographical error in Raju and Burke's article has been corrected in estimate_var_rho_tsa_rb2 so as to compute appropriate partial derivatives.

Details

######## Measurement error only ########

The attenuation formula for measurement error is

_XY=_TPq_Xq_Yrxy = rtp * qx * qy where _XYrxy is an observed correlation, _TPrtp is a true-score correlation, and q_Xqx and q_Yqy are the square roots of reliability coefficients for X and Y, respectively.

The Taylor series approximation of the variance of _TPrtp can be computed using the following linear equation,

var__TP [var_r_XY-var_e-(b_1^2var_q_X+b_2^2var_q_Y)]/b_3^2var_rtp ~= (var_rxy - var_e - (b1^2 * var_qx + b2^2 * var_qy)) / b3^2

where b_1b1, b_2b2, and b_3b3 are first-order partial derivatives of the attenuation formula with respect to q_Xqx, q_Yqy, and _TPrtp, respectively. The first-order partial derivatives of the attenuation formula are:

b_1=_XY q_X=_TPq_Yb1 = rtp * qy b_2=_XY q_Y=_TPq_Xb2 = rtp * qx b_3=_XY_TP=q_Xq_Yb3 = qx * qy

######## Univariate direct range restriction (UVDRR; i.e., Case II) ########

The UVDRR attenuation procedure may be represented as

_XY_i=_TP_aq_Y_iq_X_au_X_TP_a^2q_X_a^2(u_X^2-1)+1rxyi = ux * rxpa * qxa / sqrt((ux^2 - 1) * rxpa^2 * qxa^2 + 1) * qyi

The attenuation formula can also be represented as:

_XY_i=_TP_aq_Y_iq_X_au_XArxyi = qxa * qyi * rtpa * ux * A

where

A=1_TP_a^2q_X_a^2(u_X^2-1)+1A = 1 / sqrt(rtpa^2 * qxa^2* (ux^2 - 1) + 1)

The Taylor series approximation of the variance of _TP_artpa can be computed using the following linear equation,

var__TP_a [var_r_XY_i-var_e-(b_1^2var_q_X_a+b_2^2var_q_Y_i+b_3^2var_u_X)]/b_4^2var_rtpa ~= (var_rxyi - var_e - (b1^2 * var_qxa + b2^2 * var_qyi + b3^2 * var_ux)) / b4^2

where b_1b1, b_2b2, b_3b3, and b_4b4 are first-order partial derivatives of the attenuation formula with respect to q_X_aqxa, q_Y_iqyi, u_Xux, and _TP_artpa, respectively. The first-order partial derivatives of the attenuation formula are:

b_1=_XY_i q_X_a=_TP_aq_Y_iu_XA^3b1 = qyi * rtpa * ux * A^3 b_2=_XY_i q_Y_i=_XY_iq_Y_ib2 = qxa * qyi * rtpa * ux * A / qyi b_3=_XY_i u_X=-_TP_aq_Y_iq_X_a(_TP_a^2q_X_a^2-1)A^3b3 = -(qyi * rtpa * qxa * (rtpa^2 * qxa^2 - 1)) * A^3 b_4=_XY_i_TP_a=q_Y_iq_X_au_XA^3b4 = (qyi * qxa * ux) * A^3

######## Univariate indirect range restriction (UVIRR; i.e., Case IV) ########

Under univariate indirect range restriction, the attenuation formula yielding _XY_irxyi is:

_XY_i=u_Tq_X_au_T^2q_X_a^2+1-q_X_a^2u_T_TP_au_T^2_TP_a^2+1-_TP_a^2rxyi = (ut * qxa) / (sqrt(ut^2 * qxa^2 + 1 - qxa^2)) * (ut * rtpa) / (sqrt(ut^2 * rtpa^2 + 1 - rtpa^2))

The attenuation formula can also be represented as:

_XY_i=q_X_aq_Y_i_TP_au_T^2ABrxyi = qxa * qyi * rtpa * ut^2 * A * B

where

A=1u_T^2q_X_a^2+1-q_X_a^2A = 1 / sqrt(ut^2 * rtpa^2 - rtpa^2 + 1)

and

B=1u_T^2_TP_a^2+1-_TP_a^2B = 1 / sqrt(ut^2 * qxa^2 - qxa^2 + 1)

The Taylor series approximation of the variance of _TP_artpa can be computed using the following linear equation,

var__TP_a [var_r_XY_i-var_e-(b_1^2var_q_X_a+b_2^2var_q_Y_i+b_3^2var_u_T)]/b_4^2var_rtpa ~= (var_rxyi - var_e - (b1^2 * var_qxa + b2^2 * var_qyi + b3^2 * var_ut)) / b4^2

where b_1b1, b_2b2, b_3b3, and b_4b4 are first-order partial derivatives of the attenuation formula with respect to q_X_aqxa, q_Y_iqyi, u_Tut, and _TP_artpa, respectively. The first-order partial derivatives of the attenuation formula are:

b_1=_XY_i q_X_a=_XY_iq_X_a-_XY_iq_X_aB^2(u_T^2-1)b1 = rxyi / qxa - rxyi * qxa * B^2 * (ut^2 - 1) b_2=_XY_i q_Y_i=_XY_iq_Y_ib2 = rxyi / qyi b_3=_XY_i u_T=2_XY_iu_T-_XY_iu_Tq_X_a^2B^2-_XY_iu_T_TP_a^2A^2b3 = (2 * rxyi) / ut - rxyi * ut * qxa^2 * B^2 - rxyi * ut * rtpa^2 * A^2 b_4=_XY_i_TP_a=_XY_i_TP_a-_XY_i_TP_aA^2(u_T^2-1)b4 = rxyi / rtpa - rxyi * rtpa * A^2 * (ut^2 - 1)

######## Bivariate direct range restriction (BVDRR) ########

Under bivariate direct range restriction, the attenuation formula yielding _XY_irxyi is:

_XY_i=A+_TP_a^2q_X_aq_Y_a-1q_X_aq_Y_a2_TP_au_Xu_Yrxyi = (sqrt((1/(qya * qxa) - rtpa^2 * qya * qxa)^2 + 4 * rtpa^2 * ux^2 * uy^2) + rtpa^2 * qya * qxa - 1/(qya * qxa))/(2 * rtpa * ux * uy)

where

A=(1q_X_aq_Y_a-_TP_a^2q_X_aq_Y_a)^2+4_TP_au_X^2u_Y^2A = sqrt((1/(qya * qxa) - qya * rtpa^2 * qxa)^2 + 4 * rtpa^2 * ux^2 * uy^2)

The Taylor series approximation of the variance of _TP_artpa can be computed using the following linear equation,

var__TP_a [var_r_XY_i-var_e-(b_1^2var_q_X_a+b_2^2var_q_Y_i+b_3^2var_u_X+b_4^2var_u_Y)]/b_5^2var_rtpa ~= (var_rxyi - var_e - (b1^2 * var_qxa + b2^2 * var_qya + b3^2 * var_ux + b4^2 * var_uy)) / b5^2

where b_1b1, b_2b2, b_3b3, b_4b4, and b_5b5 are first-order partial derivatives of the attenuation formula with respect to q_X_aqxa, q_Y_aqya, u_Xux, u_Yuy, and _TP_artpa, respectively. First, we define terms to simplify the computation of partial derivatives:

B=(_TP_a^2q_X_a^2q_Y_a^2+q_X_aq_Y_aA-1)B = (qya^2 * rtpa^2 * qxa^2 + qya * qxa * A - 1)

C=2_TP_aq_X_a^2q_Y_a^2u_Xu_YAC = 2 * qya^2 * rtpa * qxa^2 * ux * uy * sqrt((1/(qya * qxa) - qya * rtpa^2 * qxa)^2 + 4 * rtpa^2 * ux^2 * uy^2)

The first-order partial derivatives of the attenuation formula are:

b_1=_XY_i q_X_a=(_TP_a^2q_X_a^2q_Y_a^2+1)Bq_X_aCb1 = ((rtpa^2 * qxa^2 * qya^2 + 1) * B) / (qxa * C) b_2=_XY_i q_Y_i=(_TP_a^2q_X_a^2q_Y_a^2+1)Bq_Y_aCb2 = ((rtpa^2 * qxa^2 * qya^2 + 1) * B) / (qya * C) b_3=_XY_i u_X=-(_TP_aq_X_aq_Y_a-1)(_TP_aq_X_aq_Y_a+1)Bu_XCb3 = -((qya * rtpa * qxa - 1) * (qya * rtpa * qxa + 1) * B) / (ux * C) b_4=_XY_i u_Y=-(_TP_aq_X_aq_Y_a-1)(_TP_aq_X_aq_Y_a+1)Bu_YCb4 = -((qya * rtpa * qxa - 1) * (qya * rtpa * qxa + 1) * B) / (uy * C) b_5=_XY_i_TP_a=(_TP_a^2q_X_a^2q_Y_a^2+1)B_TP_aCb5 = ((rtpa^2 * qxa^2 * qya^2 + 1) * B) / (rtpa * C)

######## Bivariate indirect range restriction (BVIRR; i.e., Case V) ########

Under bivariate indirect range restriction, the attenuation formula yielding _XY_irxyi is:

_XY_i=_TP_aq_X_aq_Y_a-|1-u_X^2||1-u_Y^2|u_Xu_Yrxyi = (rtpa * qxa * qya - lambda * sqrt(abs(1 - ux^2) * abs(1 - uy^2))) / (uy * ux)

The Taylor series approximation of the variance of _TP_artpa can be computed using the following linear equation,

var__TP_a [var_r_XY_i-var_e-(b_1^2var_q_X_a+b_2^2var_q_Y_i+b_3^2var_u_X+b_4^2var_u_Y)]/b_5^2var_rtpa ~= (var_rxyi - var_e - (b1^2 * var_qxa + b2^2 * var_qya + b3^2 * var_ux + b4^2 * var_uy)) / b5^2

where b_1b1, b_2b2, b_3b3, b_4b4, and b_5b5 are first-order partial derivatives of the attenuation formula with respect to q_X_aqxa, q_Y_aqya, u_Xux, u_Yuy, and _TP_artpa, respectively. First, we define terms to simplify the computation of partial derivatives:

b_1=_XY_i q_X_a=_TP_aq_Y_au_Xu_Yb1 = rtpa * qya / (ux * uy) b_2=_XY_i q_Y_i=_TP_aq_X_au_Xu_Yb2 = rtpa * qxa / (ux * uy) b_3=_XY_i u_X=(1-u_X^2)|1-u_Y^2|u_Y|1-u_X^2|^1.5-_XY_iu_Xb3 = (lambda * (1 - ux^2) * sqrt(abs(1 - uy^2))) / (uy * abs(1 - ux^2)^1.5) - rxyi / ux b_4=_XY_i u_Y=(1-u_Y^2)|1-u_X^2|u_X|1-u_Y^2|^1.5-_XY_iu_Yb4 = (lambda * (1 - uy^2) * sqrt(abs(1 - ux^2))) / (ux * abs(1 - uy^2)^1.5) - rxyi / uy b_5=_XY_i_TP_a=q_X_aq_Y_au_Xu_Yb5 = (qxa * qya) / (ux * uy)

######## Raju and Burke's TSA1 procedure ########

Raju and Burke's attenuation formula may be represented as

_XY_i=_TP_au_X_XX_a_YY_a_TP_a^2_XX_a_YY_au_X^2-_TP_a^2_XX_a_YY_a+1rxyi = (rtpa * ux * sqrt(ryya * rxxa)) / sqrt(rtpa^2 * ryya * rxxa * ux^2 - rtpa^2 * ryya * rxxa + 1)

The Taylor series approximation of the variance of _TP_artpa can be computed using the following linear equation,

var__TP_a [var_r_XY_i-var_e-(B^2var__YY_a+C^2var__XX_a+D^2var_u_X)]/A^2var_rtpa ~= (var_rxyi - var_e - (B^2 * var_ryya + C^2 * var_rxxa + D^2 * var_ux)) / A^2

where A, B, C, and D are first-order partial derivatives of the attenuation formula with respect to _TP_artpa, _XX_arxxa, _YY_aryya, and u_Xux, respectively. The first-order partial derivatives of the attenuation formula are:

A=_XY_i_TP_a=_XY_i_TP_a+_XY_i(1-u_X^2)^3_TP_au_X^2A = rxyi / rtpa + (rxyi^3 * (1 - ux^2)) / (rtpa * ux^2) B=_XY_i_YY_a=12(_XY_i_YY_a+_XY_i(1-u_X^2)^3_YY_au_X^2)B = .5 * (rxyi / ryya + (rxyi^3 * (1 - ux^2)) / (ryya * ux^2)) C=_XY_i_XX_a=12(_XY_i_XX_a+_XY_i(1-u_X^2)^3_XX_au_X^2)C = .5 * (rxyi / rxxa + (rxyi^3 * (1 - ux^2)) / (rxxa * ux^2)) D=_XY_i u_X=_XY_i-_XY_i^3u_XD = (rxyi - rxyi^3) / ux

######## Raju and Burke's TSA2 procedure ########

Raju and Burke's attenuation formula may be represented as

_XY_i=_TP_aq_X_aq_Y_au_X_TP_a^2q_X_a^2q_Y_a^2u_X^2-_TP_a^2q_X_a^2q_Y_a^2+1rxyi = (rtpa * qya * qxa * ux) / sqrt(rtpa^2 * qya^2 * qxa^2 * ux^2 - rtpa^2 * qya^2 * qxa^2 + 1)

The Taylor series approximation of the variance of _TP_artpa can be computed using the following linear equation,

var__TP_a [var_r_XY_i-var_e-(F^2var_q_Y_a+G^2var_q_X_a+H^2var_u_X)]/E^2var_rtpa ~= (var_rxyi - var_e - (F^2 * var_qya + G^2 * var_qxa + H^2 * var_ux)) / E^2

where E, F, G, and H are first-order partial derivatives of the attenuation formula with respect to _TP_artpa, q_X_aqxa, q_Y_aqya, and u_Xux, respectively. The first-order partial derivatives of the attenuation formula (with typographic errors in the original article corrected) are:

E=_XY_i_TP_a=_XY_i_TP_a+_XY_i(1-u_X^2)^3_TP_au_X^2E = rxyi / rtpa + (rxyi^3 * (1 - ux^2)) / (rtpa * ux^2) F=_XY_i q_Y_a=_XY_iq_Y_a+_XY_i(1-u_X^2)^3q_Y_au_X^2F = (rxyi / qya + (rxyi^3 * (1 - ux^2)) / (qya * ux^2)) G=_XY_i q_X_a=_XY_iq_X_a+_XY_i(1-u_X^2)^3q_X_au_X^2G = (rxyi / qxa + (rxyi^3 * (1 - ux^2)) / (qxa * ux^2)) H=_XY_i u_X=_XY_i-_XY_i^3u_XH = (rxyi - rxyi^3) / ux

References

Dahlke, J. A., & Wiernik, B. M. (2020). Not restricted to selection research: Accounting for indirect range restriction in organizational research. Organizational Research Methods, 23(4), 717–749. tools:::Rd_expr_doi("10.1177/1094428119859398")

Hunter, J. E., Schmidt, F. L., & Le, H. (2006). Implications of direct and indirect range restriction for meta-analysis methods and findings. Journal of Applied Psychology, 91(3), 594–612. tools:::Rd_expr_doi("10.1037/0021-9010.91.3.594")

Raju, N. S., & Burke, M. J. (1983). Two new procedures for studying validity generalization. Journal of Applied Psychology, 68(3), 382–395. tools:::Rd_expr_doi("10.1037/0021-9010.68.3.382")

Examples

Run this code
estimate_var_rho_tsa_meas(mean_rtp = .5, var_rxy = .02, var_e = .01,
                 mean_qx = .8, var_qx = .005,
                 mean_qy = .8, var_qy = .005)
estimate_var_rho_tsa_uvdrr(mean_rtpa = .5, var_rxyi = .02, var_e = .01,
                  mean_ux = .8, var_ux = .005,
                  mean_qxa = .8, var_qxa = .005,
                  mean_qyi = .8, var_qyi = .005)
estimate_var_rho_tsa_bvdrr(mean_rtpa = .5, var_rxyi = .02, var_e = .01,
                  mean_ux = .8, var_ux = .005,
                  mean_uy = .8, var_uy = .005,
                  mean_qxa = .8, var_qxa = .005,
                  mean_qya = .8, var_qya = .005)
estimate_var_rho_tsa_uvirr(mean_rtpa = .5, var_rxyi = .02, var_e = .01,
                  mean_ut = .8, var_ut = .005,
                  mean_qxa = .8, var_qxa = .005,
                  mean_qyi = .8, var_qyi = .005)
estimate_var_rho_tsa_bvirr(mean_rtpa = .5, var_rxyi = .02, var_e = .01,
                  mean_ux = .8, var_ux = .005,
                  mean_uy = .8, var_uy = .005,
                  mean_qxa = .8, var_qxa = .005,
                  mean_qya = .8, var_qya = .005,
                  sign_rxz = 1, sign_ryz = 1)
estimate_var_rho_tsa_rb1(mean_rtpa = .5, var_rxyi = .02, var_e = .01,
                mean_ux = .8, var_ux = .005,
                mean_rxx = .8, var_rxx = .005,
                mean_ryy = .8, var_ryy = .005)
estimate_var_rho_tsa_rb2(mean_rtpa = .5, var_rxyi = .02, var_e = .01,
                mean_ux = .8, var_ux = .005,
                mean_qx = .8, var_qx = .005,
                mean_qy = .8, var_qy = .005)

Run the code above in your browser using DataLab