Learn R Programming

psychmeta (version 2.6.5)

.heterogeneity: Computation of heterogeneity indices from meta-analytic results

Description

Computation of heterogeneity indices from meta-analytic results

Usage

.heterogeneity(
  mean_es,
  var_es,
  var_pre,
  var_res,
  var_e = NA,
  var_art = NA,
  wt_vec,
  N,
  k,
  es_vec,
  vare_vec,
  es_failsafe = NULL,
  conf_level = 0.95,
  es_type = "es",
  wt_type,
  ma_method,
  var_unbiased,
  var_res_ci_method
)

Value

A list of heterogeneity statistics.

Arguments

mean_es

The mean effect size.

var_es

The observed variances of effect sizes.

var_pre

The total predicted variance of effect sizes due to sampling error and other artifacts.

var_res

The estimated residual variance of effect sizes.

var_e

The predicted variance of effect sizes due to sampling error.

var_art

The predicted variance of effect sizes predicted from other artifacts.

wt_vec

The vector of weights used in the meta-analysis.

N

The total sample size of the meta-analysis.

k

The number of effect sizes included in the meta-analysis.

es_vec

The vector of effect sizes used in the meta-analysis.

vare_vec

The vector of sampling-error variances used in the meta-analysis.

es_failsafe

Failsafe value of the effect size for use in file-drawer analyses.

conf_level

Confidence level to define the width of the confidence interval (default = .95).

es_type

Name of effect-size type.

wt_type

Weighting method.

ma_method

What artifact correction method is used. Options are "bb", "ic", and "ad".

var_unbiased

Are variances calculated using the unbiased (TRUE) or maximum likelihood (FALSE) estimator?

var_res_ci_method

Method to use to estimate a confidence interval for var_res. See heterogeneity() for details.