# NOT RUN {
library(psycho)
library(ggplot2)
fit <- lmerTest::lmer(Tolerating ~ Adjusting + (1 | Salary), data = affective)
refgrid <- psycho::refdata(affective, "Adjusting")
predicted <- get_predicted(fit, newdata = refgrid)
ggplot(predicted, aes(x = Adjusting, y = Tolerating_Predicted)) +
geom_line()
predicted <- get_predicted(fit, newdata = refgrid, prob = 0.95, iter = 100) # Takes a long time
ggplot(predicted, aes(x = Adjusting, y = Tolerating_Predicted)) +
geom_line() +
geom_ribbon(aes(
ymin = Tolerating_CI_2.5,
ymax = Tolerating_CI_97.5
),
alpha = 0.1
)
fit <- lme4::glmer(Sex ~ Adjusting + (1 | Salary), data = affective, family = "binomial")
refgrid <- psycho::refdata(affective, "Adjusting")
predicted <- get_predicted(fit, newdata = refgrid)
ggplot(predicted, aes(x = Adjusting, y = Sex_Predicted)) +
geom_line()
predicted <- get_predicted(fit, newdata = refgrid, prob = 0.95, iter = 100) # Takes a long time
ggplot(predicted, aes(x = Adjusting, y = Sex_Predicted)) +
geom_line() +
geom_ribbon(aes(
ymin = Sex_CI_2.5,
ymax = Sex_CI_97.5
),
alpha = 0.1
)
# }
Run the code above in your browser using DataLab