exprReslt using mmgmos.
justmmgMOS(..., filenames=character(0), widget=getOption("BioC")$affy$use.widgets, compress=getOption("BioC")$affy$compress.cel, celfile.path=getwd(), sampleNames=NULL, phenoData=NULL, description=NULL, notes="", background=TRUE, gsnorm=c("median", "none", "mean", "meanlog"), savepar=FALSE, eps=1.0e-6)
just.mmgmos(..., filenames=character(0), phenoData=new("AnnotatedDataFrame"), description=NULL, notes="", compress=getOption("BioC")$affy$compress.cel, background=TRUE, gsnorm=c("median", "none", "mean", "meanlog"), savepar=FALSE, eps=1.0e-6)FeatureSet.AnnotatedDataFrame
object.MIAME objectTRUE, then perform background correction before applying mmgmos.TRUE, the the estimated parameters of the model are saved in file par\_mmgmos.txt and phi\_mmgmos.txt.exprReslt.
FeatureSet and then running
mmgmos.
Note that this expression measure is given to you in log base 2 scale. This differs from
most of the other expression measure methods.The algorithms of global scaling normalisation can be one of "median", "none", "mean", "meanlog". "mean" and "meanlog" are mean-centered normalisation on raw scale and log scale respectively, and "median" is median-centered normalisation. "none" will result in no global scaling normalisation being applied.
exprReslt-class and related method mmgmos