# Compute normal distributions from an atomic vector
1:10 |>
map(rnorm, n = 10)
# You can also use an anonymous function
1:10 |>
map(\(x) rnorm(10, x))
# Simplify output to a vector instead of a list by computing the mean of the distributions
1:10 |>
map(rnorm, n = 10) |> # output a list
map_dbl(mean) # output an atomic vector
# Using set_names() with character vectors is handy to keep track
# of the original inputs:
set_names(c("foo", "bar")) |> map_chr(paste0, ":suffix")
# Working with lists
favorite_desserts <- list(Sophia = "banana bread", Eliott = "pancakes", Karina = "chocolate cake")
favorite_desserts |> map_chr(\(food) paste(food, "rocks!"))
# Extract by name or position
# .default specifies value for elements that are missing or NULL
l1 <- list(list(a = 1L), list(a = NULL, b = 2L), list(b = 3L))
l1 |> map("a", .default = "???")
l1 |> map_int("b", .default = NA)
l1 |> map_int(2, .default = NA)
# Supply multiple values to index deeply into a list
l2 <- list(
list(num = 1:3, letters[1:3]),
list(num = 101:103, letters[4:6]),
list()
)
l2 |> map(c(2, 2))
# Use a list to build an extractor that mixes numeric indices and names,
# and .default to provide a default value if the element does not exist
l2 |> map(list("num", 3))
l2 |> map_int(list("num", 3), .default = NA)
# Working with data frames
# Use map_lgl(), map_dbl(), etc to return a vector instead of a list:
mtcars |> map_dbl(sum)
# A more realistic example: split a data frame into pieces, fit a
# model to each piece, summarise and extract R^2
mtcars |>
split(mtcars$cyl) |>
map(\(df) lm(mpg ~ wt, data = df)) |>
map(summary) |>
map_dbl("r.squared")
Run the code above in your browser using DataLab