# NOT RUN {
# Density curve of a VGGFR model
VGGFR(2, 12, add=FALSE, lwd=2, lty=5, col="darkgreen", ylim=c(0,2), Main="", np=201)
#####
#
a<-ranktes(0.5, 28, "r4", "vg",FALSE, "two", FALSE)
b<-VGGFR(a$Lambda, add = FALSE, lwd = 2, lty = 5, col = "blue", ylim=c(0,2.5),np = 201)
#####
#
# Lambert's semicircular distribution of errors (1760,1765).
# Given a probability distribution, the value with the higher probability density is
# deemed to be more probable than the value with the lower probability density.
#
VGGFR(2,0.5,col="red",ylim=c(0,0.75),Main="Lambert's distribution of errors")
#
#####
# Pearson type II used as an approximation to the null distribution of the Fisher-Yates
# rank correlation. Fieller, E. C. and Pearson, E. S. (1961). Tests for rank correlation
# coefficients: II. Biometrika, 48, 29-40.
n<-10
VGGFR(2, (n-4)/2, add=FALSE, lwd=2, lty=5, col="magenta2", ylim=c(0,1.1), Main="", np=201)
abline(h=0);abline(v=0,lty=2,lwd=2,col="pink2")
#####
#
# Save and use the results
res<-VGGFR(1.5,5.5,add = FALSE, lwd = 2, lty = 1, col = "blue", ylim=c(0,2.5),np = 201)
res$kurt-res$oam/res$st.dev
#####
#
# A family of symmetrical beta densities
VGGFR(2,1,col="black",ylim=c(0,1.4),Main="Symmetrical beta densities")
La<-seq(1,6,0.5)
for (L1 in La){VGGFR(2,L1,add=TRUE, lwd = 1, lty = 1, col=gray(L1/6))}
#####
#
# A family of GGFR curves
VGGFR(1,2, lwd = 1, lty = 1,col="black",ylim=c(0,5))
La<-seq(1,6,0.5);Lg<-seq(0,1,1/12)
for (L1 in La){
c2<-gray(Lg, alpha= 2/6)
for (L2 in seq(1,12,1)){
VGGFR(L1,L2,add=TRUE, lwd = 1, lty = 1, col=c2[L2])
}}
# }
Run the code above in your browser using DataLab