Learn R Programming

pwr (version 1.3-0)

pwr-package: Basic Functions for Power Analysis pwr

Description

Power calculations along the lines of Cohen (1988) using in particular the same notations for effect sizes. Examples from the book are given.

Arguments

Details

Package: pwr
Type: Package
Version: 1.3-0
Date: 2020-03-16
License: GPL (>= 3)

This package contains functions for basic power calculations using effect sizes and notations from Cohen (1988) : pwr.p.test: test for one proportion (ES=h) pwr.2p.test: test for two proportions (ES=h) pwr.2p2n.test: test for two proportions (ES=h, unequal sample sizes) pwr.t.test: one sample and two samples (equal sizes) t tests for means (ES=d) pwr.t2n.test: two samples (different sizes) t test for means (ES=d) pwr.anova.test: test for one-way balanced anova (ES=f) pwr.r.test: correlation test (ES=r) pwr.chisq.test: chi-squared test (ES=w) pwr.f2.test: test for the general linear model (ES=f2) ES.h: computing effect size h for proportions tests ES.w1: computing effect size w for the goodness of fit chi-squared test ES.w2: computing effect size w for the association chi-squared test cohen.ES: computing effect sizes for all the previous tests corresponding to conventional effect sizes (small, medium, large)

References

Cohen, J. (1988). Statistical power analysis for the behavioral sciences (2nd ed.). Hillsdale,NJ: Lawrence Erlbaum.

See Also

power.t.test,power.prop.test,power.anova.test

Examples

Run this code
# NOT RUN {
## Exercise 8.1 P. 357 from Cohen (1988)
pwr.anova.test(f=0.28,k=4,n=20,sig.level=0.05)

## Exercise 6.1 p. 198 from Cohen (1988)
pwr.2p.test(h=0.3,n=80,sig.level=0.05,alternative="greater")

## Exercise 7.3 p. 251
pwr.chisq.test(w=0.346,df=(2-1)*(3-1),N=140,sig.level=0.01)

## Exercise 6.5 p. 203 from Cohen (1988)
pwr.p.test(h=0.2,n=60,sig.level=0.05,alternative="two.sided")
# }

Run the code above in your browser using DataLab