Learn R Programming

qcc (version 2.6)

ewmaSmooth: EWMA smoothing function

Description

Compute Exponential Weighted Moving Average.

Usage

ewmaSmooth(x, y, lambda = 0.2, start, ...)

Arguments

x
a vector of x-values.
y
a vector of y-values.
lambda
the smoothing parameter.
start
the starting value.
...
additional arguments (currently not used).

Value

  • Returns a list with elements:
  • xordered x-values
  • ysmoothed y-values
  • lambdathe smoothing parameter
  • startthe starting value

Details

EWMA function smooths a series of data based on a moving average with weights which decay exponentially.

For each $y_t$ value the smoothed value is computed as $$z_t = \lambda y_t + (1-\lambda) z_{t-1}$$ where $0 \le \lambda \le 1$ is the parameter which controls the weights applied.

References

Montgomery, D.C. (2005) Introduction to Statistical Quality Control, 5th ed. New York: John Wiley & Sons. Wetherill, G.B. and Brown, D.W. (1991) Statistical Process Control. New York: Chapman & Hall.

See Also

qcc, cusum

Examples

Run this code
x <- 1:50
y <- rnorm(50, sin(x/5), 0.5)
plot(x,y)
lines(ewmaSmooth(x,y,lambda=0.1), col="red")

Run the code above in your browser using DataLab