Davino, C., Dolce, P., Taralli, S. and Vistocco, D. (2020). Composite-based
path modeling for conditional quantiles prediction. An application to assess
health differences at local level in a well-being perspective.
Social Indicators Research, doi:10.1007/s11205-020-02425-5..
Davino, C. and Esposito Vinzi, V. (2016). Quantile composite-based path modeling.
Advances in Data Analysis and Classification, 10 (4), pp.
491--520, doi:10.1007/s11634-015-0231-9.
Davino, C., Esposito Vinzi, V. and Dolce, P. (2016). Assessment and validation in
quantile composite-based path modeling. In: Abdi H., Esposito Vinzi, V., Russolillo, G.,
Saporta, G., Trinchera, L. (eds.). The Multiple Facets of Partial Least Squares Methods,
chapter 13. Springer proceedings in mathematics and statistics. Springer, Berlin
Dolce, P., Davino, C. and Vistocco, D. (2021). Quantile composite-based path modeling:
algorithms, properties and applications. Advances in Data Analysis and Classification,
doi:10.1007/s11634-021-00469-0.
Koenker, R. and Machado, J.A. (1999). Goodness of fit and related inference processes
for quantile regression. Journal of the American Statistical Association, 94 (448)
pp. 1296--1310, doi: 10.1080/01621459.1999.10473882
He, X.M. and Zhu, L.X. (2003). A lack-of-fit test for quantile regression.
Journal of the American Statistical Association 98 pp. 1013--1022,
doi: 10.1198/016214503000000963