# NOT RUN {
x <- factor(with(rajSPLIT, paste(act, pad(TOT(tot)), sep = "|")))
word_cor(rajSPLIT$dialogue, x, "romeo", .45)
word_cor(rajSPLIT$dialogue, x, "love", .5)
## Negative correlation
word_cor(rajSPLIT$dialogue, x, "you", -.1)
with(rajSPLIT, word_cor(dialogue, list(person, act), "hate"))
words <- c("hate", "i", "love", "ghost")
with(rajSPLIT, word_cor(dialogue, x, words, r = .5))
with(rajSPLIT, word_cor(dialogue, x, words, r = .4))
## Set `r = NULL` to get matrix between words
with(rajSPLIT, word_cor(dialogue, x, words, r = NULL))
## Plotting
library(tm)
data("crude")
oil_cor1 <- apply_as_df(crude, word_cor, word = "oil", r=.7)
plot(oil_cor1)
oil_cor2 <- apply_as_df(crude, word_cor, word = qcv(texas, oil, money), r=.7)
plot(oil_cor2)
plot(oil_cor2, ncol=2)
oil_cor3 <- apply_as_df(crude, word_cor, word = qcv(texas, oil, money), r=NULL)
plot(oil_cor3)
## Run on multiple times/person/nested
## Split and apply to data sets
## Suggested use of stemming
DATA3 <- split(DATA2, DATA2$person)
## Find correlations between words per turn of talk by person
## Throws multiple warning because small data set
library(qdapTools)
lapply(DATA3, function(x) {
word_cor(x[, "state"], qdapTools::id(x), qcv(computer, i, no, good), r = NULL)
})
## Find words correlated per turn of talk by person
## Throws multiple warning because small data set
lapply(DATA3, function(x) {
word_cor(x[, "state"], qdapTools::id(x), qcv(computer, i, no, good))
})
## A real example
dat <- pres_debates2012
dat$TOT <- factor(with(dat, paste(time, pad(TOT(tot)), sep = "|")))
dat <- dat[dat$person %in% qcv(OBAMA, ROMNEY), ]
dat$person <- factor(dat$person)
dat.split <- with(dat, split(dat, list(person, time)))
wrds <- qcv(america, debt, dollar, people, tax, health)
lapply(dat.split, function(x) {
word_cor(x[, "dialogue"], x[, "TOT"], wrds, r=NULL)
})
## Supply a matrix (make sure to use `t` on a `wfm` matrix)
worlis <- list(
pronouns = c("you", "it", "it's", "we", "i'm", "i"),
negative = qcv(no, dumb, distrust, not, stinks),
literacy = qcv(computer, talking, telling)
)
y <- wfdf(DATA$state, qdapTools::id(DATA, prefix = TRUE))
z <- wfm_combine(y, worlis)
out <- word_cor(t(z), word = c(names(worlis), "else.words"), r = NULL)
out
plot(out)
## Additional plotting/viewing
require(tm)
data("crude")
out1 <- word_cor(t(as.wfm(crude)), word = "oil", r=.7)
vect2df(out1[[1]], "word", "cor")
plot(out1)
qheat(vect2df(out1[[1]], "word", "cor"), values=TRUE, high="red",
digits=2, order.by ="cor", plot=FALSE) + coord_flip()
out2 <- word_cor(t(as.wfm(crude)), word = c("oil", "country"), r=.7)
plot(out2)
# }
Run the code above in your browser using DataLab